首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 789 毫秒
1.
为研究大跨度闭口组合钢箱梁组合桥面板的有效宽度系数变化规律,依托G1503高速公路跨吴淞江大桥建立了组合连续钢箱梁桥有限元模型,分析了不同桥梁跨度、不同箱室宽度下的跨中截面和中支点截面有效宽度系数变化规律,对比了钢桥面板和混凝土桥面板有效宽度的差异,给出了混凝土桥面板有效宽度系数建议取值。结果表明,组合桥面板的钢桥面板和混凝土桥面板横断面应力分布规律相似。钢桥面板的有效宽度与规范规定基本相等,跨中断面小约0.41%,支点断面小约4.13%;混凝土桥面板的有效宽度与规范规定差异较大,跨中断面小约3.25%,支点断面小约27.9%。组合桥面板的钢桥面板有效宽度比混凝土桥面板有效宽度大,跨中断面相差0.51%,支点断面相差5.9%,混凝土桥面板有效宽度系数可参考钢桥面板有效宽度系数折减0.9倍取值。  相似文献   

2.
黄志刚  李玮  刘元亮 《公路》2022,67(1):134-138
空间杆系法将正交异性钢桥面板等效为空间杆系结构的简化计算方法,其计算精度有赖于桥面板的有效宽度取值.结合试验结果及空间板壳法分析,研究了密布横梁体系正交异性钢桥面板的有效宽度,并对SF法分析结果的有效性进行了验证.建议采用空间杆系法进行正交异性钢桥面板分析时,对桥面板有效宽度取值可依《日本道桥示方书》规定.  相似文献   

3.
为研究槽型双箱组合梁斜拉桥桥面板在纵向预应力作用下的有效宽度,结合某大跨度组合梁桥面结构,通过建立考虑钢梁-混凝土桥面板界面滑移的三维实体节段有限元模型,分析了桥面板在纵向预应力作用下的应力分布及传递机理,提出了预应力传递角度变化的有效宽度计算方法.研究结果表明:相对于标准AASHTO LRFD (2007)和DIN 1075,有效宽度计算方法能够考虑纵向预应力在桥面板中传递的全过程及预应力传递角度的变化,与有限元结果具有更高的吻合度,可为同类组合梁斜拉桥设计提供参考.  相似文献   

4.
中国目前钢箱梁桥面板有效翼缘宽度计算主要参考英国BS 5400规范和日本道路桥示方书,但两国规范存在差异。分析英国BS 5400规范和日本道路桥示方书关于钢箱梁桥面板有效翼缘宽度规定的差别。根据英国和日本的相关规范,分别计算简支梁、连续梁两种结构形式在相同跨径和支撑条件下钢箱梁桥面板有效宽度。对比两国规范差异,指出两国规范制定的细节因素,对借鉴两国规范的经验提出建议。  相似文献   

5.
为有效改善连续钢混组合箱梁桥负弯矩区受力性能,以临汾市滨河西路与彩虹桥、景观大道立交桥项目为工程案例,提出基于顶升工艺的连续钢混组合箱梁桥负弯矩区设计方法。对桥面板施工工序、支点顶升顺序、桥面板存放龄期等顶升设计参数展开研究,以期桥面板和钢梁达到良好的受力状态,并对结构线型进行了施工全过程监控。研究表明:皮尔格法可有效降低中支点桥面板拉应力,降低幅值达60%;支点顶升顺序会显著影响桥面板预压应力效果,各支点桥面板预压应力均匀是评价顶升顺序的重要技术指标;随着桥面板存放龄期的增长,其裂缝宽度明显减小。临汾市滨河西路与彩虹桥、景观大道立交桥项目的建成是基于顶升工艺的连续钢混组合箱梁桥在市政桥梁工程领域的一次成功尝试,其负弯矩区设计思路、设计参数取值可对国内钢混组合桥梁的大规模建造提供很好的借鉴意义。  相似文献   

6.
方金  范亮  杨未蓬 《公路》2022,67(2):130-137
为探究施工工艺参数对高温浇筑过程中钢桥面板温度效应的影响,基于瞬态温度场传热理论和热力学边界条件假设,采用生死单元法建立钢桥面板在浇筑式高温沥青混合料摊铺过程中的时空温度场、应力场、变形场模型,研究工艺参数变化对钢桥面板温度效应的影响。研究结果表明:摊铺区顶板在距离摊铺开始35 min达到峰值温度92℃,温度效应影响大约是左右宽度1 m范围;单次摊铺宽度和摊铺速度分别对钢桥面板纵向最大拉、压应力影响显著,峰值应力分别为79.36 MPa和-136.07 MPa,摊铺温度主要影响摊铺区顶板纵向压应力和横隔板横向拉应力;钢箱梁变形主要受单次摊铺宽度的影响,单次摊铺宽度7.5 m, 24 m节段钢箱梁上拱2.12 cm,纵向最大伸长量为1.72 cm。因此,可通过适当减小单次摊铺宽度、降低摊铺温度和增大摊铺速度方式降低温度效应的影响。  相似文献   

7.
制作了两片单箱双室波形钢腹板试验梁,分为桥面板加承托和不加承托。以室内试验、有限元分析结合理论推导来探讨混凝土桥面板承托的设置对波形钢腹板箱梁桥面板横向受力的影响。通过静力试验,对试验梁桥面板的受力特点和箱梁变形进行了观测和分析。将两片梁的相关试验数据进行对比,并结合有限元分析结果、理论分析结果,得出结论如下:承托的设置对箱梁的结构性能是有一定影响的。桥面板承托的设置增强了箱梁的抗弯、抗扭刚度,减少扭转剪应力和畸变应力,加大了桥面板支点刚度,力线过渡比较均匀,减小次内力;使得箱梁挠度较不加承托时同一工况下的相应值均有一定程度的减小,约为15%。承托的设置对桥面板的有效分布宽度影响很小,加承托与不加承托的单向板的有效分布宽度误差仅为5%;但是承托的设置对波形钢腹板箱梁桥面板的横向内力存在一定影响,综合试验结果和力学分析结果,加设承托与否对桥面板横向受力的影响一致,且影响值均在10%以上。总之,对于波形钢腹板箱梁而言,从自身构造上来讲波形钢腹板与承托这两类因素均会对桥面板横向受力产生一定影响,不可忽略。  相似文献   

8.
明确定义∏形宽翼梁轴向受压时有效宽度与桥面板宽度之比,称之为有效宽度比,并给出其计算公式。选取n次抛物线的剪滞翘曲位移模式,基于能量变分原理,建立∏形宽翼梁轴向受压时考虑剪力滞效应的平衡控制微分方程,推导了微分方程的解及主梁横截面上任意点的应力、有效宽度和有效宽度比的计算公式。用一模型算例验证该文理论及公式的正确性,并对有效宽度及有效宽度比的影响因素作了较全面研究。  相似文献   

9.
毕都北盘江大桥为主跨720m的双塔七跨钢桁梁斜拉桥,主梁采用钢桁梁与正交异性板组合的结构体系。结合山区特殊建设条件,钢桁梁选用正交异性钢桥面板参与受力的板桁组合结构体系;计算分析采用了空间板壳-杆系有限元分析方法,自动考虑正交异性钢桥面板的有效分布宽度;钢桁梁及桥面板的制造、运输和架设采用"化整为零、集零为整"的方式,并首次提出正交异性钢桥面板横梁支撑体系;上横梁和次横梁的腹板及下翼缘板与主桁之间采用高强度螺栓连接、桥面板全熔透对接焊的栓焊混连;钢桁梁施工因地制宜采用边跨顶推、中跨桥面吊机悬臂拼装的架设方案,解决了山区特大跨径钢桁梁斜拉桥施工难题。  相似文献   

10.
《公路》2017,(10)
桥面板横向连接湿接缝最小宽度受钢筋连接方式制约,常规的数值模拟方法无法对钢筋环形搭接进行分析,限制了小宽度湿接缝的应用。通过混凝土裂缝有限元模型,分析了钢筋不同的连接方式;通过对比计算结果,验证了在桥面板湿接缝中可采用钢筋环形搭接。  相似文献   

11.
针对目前混凝土桥梁设计中对耐久性因素作用下混凝土桥面板结构性能退化考虑较少的问题,结合耐久性极限状态理论,提出考虑车辆荷载作用的混凝土桥面板耐久性计算方法,并对混凝土桥面板合理厚度及影响桥面板耐久性的相关因素(混凝土桥面板厚度、保护层厚度、混凝土强度以及普通钢筋直径)进行分析.分析结果表明:考虑耐久性需求的公路混凝土桥面板厚度宜大于20 cm;一般大气环境下混凝土桥面板保护层厚度宜为3~5 cm,恶劣环境下可采取加大保护层厚度、使用高性能混凝土、增设防裂钢筋网等技术措施;为减小混凝土桥面板的裂缝宽度、提高桥面板耐久性,桥面板的配筋宜采用直径较小的普通钢筋.  相似文献   

12.
襄阳市东西轴线二跨汉江大桥主桥为(3×60+320)m的独塔混合梁斜拉桥,边跨主梁采用混凝土梁,主跨主梁采用钢箱梁,桥面采用14mm厚正交异性钢桥面板+80mm厚C40聚丙烯纤维混凝土+70mm厚SMA改性沥青混凝土的铺装方案。为分析该钢-混组合桥面铺装方案的结构受力是否合理,采用MIDAS Civil 2010软件建立全桥整体模型及横隔梁、U肋局部分析模型,对钢梁、混凝土桥面板的应力及混凝土桥面板的裂缝宽度进行计算分析。结果表明:钢梁及混凝土桥面板的各项应力均在规范容许的范围内;钢梁的Von Mises等效应力小于钢材的屈服强度;混凝土桥面板的表面最大裂缝宽度为0.097mm,小于规范控制的目标值0.15mm。  相似文献   

13.
为解决钢-混组合梁负弯矩区桥面板的开裂问题,以桥面连续钢-混组合梁为研究对象,负弯矩区桥面板采用超高性能混凝土(Ultra-High-Performance Concrete,UHPC)代替传统普通混凝土,对其抗裂性能展开研究,并设计3根不同负弯矩区接口形式的钢-UHPC组合梁,采用一种独特的转角加载方式进行全过程静力加载试验,获得转角、临界开裂荷载、应变等关键试验数据;基于Abaqus的混凝土塑性损伤模型建立试验梁的非线性有限元模型,并对试验过程进行模拟。研究结果表明:钢-混组合梁负弯矩区采用UHPC,能明显提高负弯矩区的开裂性能、有效解决了负弯矩区桥面板的开裂问题;建议了合理的负弯矩区接口形式及负弯矩区UHPC纵向铺设长度取0.1L;采用黏结滑移理论,提出了简易的UHPC裂缝宽度计算公式。  相似文献   

14.
为提升钢-UHPC组合桥面板的结构性能,考虑采用纤维增强筋替代UHPC中的钢筋。为研究配置纤维增强筋的钢-UHPC组合桥面板的弯曲抗裂性能,寻求合理的纤维增强筋,设计、制作4组钢-UHPC组合桥面板试件(抗裂筋分别采用钢筋、CFRP筋、GFRP筋和BFRP筋,每组2个),开展弯曲试验,以钢筋试件为参照,对比3类纤维增强筋试件的挠度、应变和裂缝发展规律。结果表明:各类试件的荷载~挠度曲线、荷载~应变曲线和荷载~最大裂缝宽度曲线的发展均与抗裂筋的力学性能密切相关;抗裂筋的弹性模量决定了钢-UHPC组合桥面板试件的抗弯刚度和裂缝控制能力,CFRP筋具有与钢筋相当的弹性模量,故其抗弯刚度大、裂缝控制能力强,而GFRP筋和BFRP筋弹性模量显著小于钢筋,故其裂缝控制能力较差;抗裂筋的抗拉强度决定了钢-UHPC组合桥面板试件的抗弯承载力,3类纤维增强筋的抗拉强度均高于钢筋,故其极限承载力均高于钢筋试件。为确保钢-UHPC组合桥面板的抗裂性能,建议必要时采用CFRP筋替代钢筋。  相似文献   

15.
在重车道采用疲劳性能较优但重量或造价较高的桥面形式,如超高性能混凝土(UHPC)华夫板、超高性能混凝土(UHPC)钢组合板等,在快车道采用传统正交异性钢桥面,组成混合桥面系统,可提升桥面结构疲劳寿命的同时降低结构的自重或造价,充分利用材料性能。针对横向由不同类型桥面组成的混合桥面,通过梁格模型参数分析得到了桥面板跨度、桥面板构造参数等对其各部分承担荷载比例和横向有效宽度的影响规律,并拟合分析数据得到了计算公式。基于此,提出了混合桥面的设计方法。  相似文献   

16.
为了研究下层混凝土的厚度对桥面板负弯矩区的影响,本文利用Midas/Civil和Midas/FEA有限元软件,建立杆系加实体的双层连续组合梁桥模型,通过改变负弯矩区下层混凝土的厚度,分析其对箱梁以及桥面板的影响,从而确定使得连续梁桥受力最为合理的下层混凝土厚度。主要结果为随着下层混凝土厚度的增加,箱梁的剪应力和拉应力会随之减小,桥面板的裂缝宽度也会随之减小。当厚度超过400mm时,箱梁的拉应力和桥面板裂缝宽度变化趋于平缓,综合考虑当其厚度在300-400mm之间时其结构受力最为合理。  相似文献   

17.
为了解新型大纵肋钢-超高性能混凝土(UHPC)正交异性组合桥面板对传统正交异性钢桥面板的受力性能的改善效果,以港珠澳大桥深水区非通航孔6×110m连续钢箱梁桥为背景,建立全桥有限元模型,对2种桥面方案的静力性能进行对比,建立节段有限元模型,对比2种桥面方案U肋与顶板连接焊缝处的疲劳性能,并分析U肋开口宽度和UHPC结构层厚度对大纵肋钢-UHPC正交异性组合桥面板疲劳性能的影响。结果表明:2种桥面方案下钢箱梁控制点的位移和应力相差不大,所提出的大纵肋钢-UHPC正交异性组合桥面板在中等跨度连续梁桥中具有较好的适用性;大纵肋钢-UHPC正交异性组合桥面板的疲劳性能显著优于传统正交异性钢桥面板;增大U肋开口宽度会导致U肋与顶板连接焊缝应力幅增加,增加UHPC结构层厚度能显著降低U肋与顶板连接焊缝应力幅。  相似文献   

18.
针对桥址处交通运输不便、气候寒冷、有效工期短的特点,黑瞎子岛乌苏大桥主桥设计为140m+140m独塔单索面大挑臂钢箱结合梁斜拉桥。主梁由钢箱梁、钢挑臂、混凝土桥面板组成,全宽26.5m,单侧挑臂长10.75m;桥塔采用独柱式混凝土结构,高117m;斜拉索采用163根直径7mm低松弛镀锌高强度平行钢丝索,按竖琴形布置。设计过程中对大桥的关键技术如主梁扭转、剪力滞效应、桥面板受力等进行了研究分析,结果表明:扭转产生的剪应力为33MPa满足规范要求,扭转角为0.007rad,不影响大桥的使用功能;主梁的剪力滞系数大部分都在2.0以下,局部达到4.0;桥面板强度和裂缝宽度均满足规范要求。  相似文献   

19.
浙江三门健跳大桥桥面板计算   总被引:1,自引:0,他引:1  
本桥桥面板由各预制横梁的顶板及横梁间的纵向现浇板构成整体,并且采用双吊杆型式,因此桥面板的受载行为较为复杂。针对本桥特殊的桥面板型式,考虑拱肋、吊杆及桥面板的耦合作用,采用通用结构分析结构SAP5仿真计算出桥面板在各个阶段的受载行为,为现场施工提供了有力的理论支持,也为类似桥面板的受载规律提供了一定的参考。  相似文献   

20.
针对目前装配式组合梁桥预制桥面板湿接缝宽度大、现浇量大的劣势,提出宽度较小的UHPC-U形钢筋接缝。为检验该接缝的力学性能,设计制作3个桥面板试件(JF-1,混凝土整板试件;JF-2,30cm宽UHPC-U形钢筋接缝试件;JF-3,60cm宽普通混凝土-U形钢筋接缝试件)进行静力弯曲试验,对比其极限承载力、抗裂性能及抗弯刚度。结果表明:3个试件的抗弯承载力相近,破坏形态均为剪跨区的弯剪破坏,湿接缝不会削弱桥面板的抗弯承载力;UHPC能显著提高湿接缝的抗裂性能;各试件的荷载~位移曲线基本相同,抗弯刚度基本一致,接缝对试件的抗弯刚度影响较小;试件JF-2、JF-3具有同等的抗弯强度及刚度,可以将UHPC作为湿接缝浇筑材料来减小接缝宽度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号