首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
以侧置式重型柴油发动机舱内的冷却模块(中冷器和散热器)为研究对象,建立了发动机舱及冷却模块的内部三维流动与传热的数值仿真模型。通过舱内冷却空气流动与冷却模块的传热耦合仿真分析,研究了中冷器和散热器在前后布置与上下布置两种形式下的散热性能。结果表明:与中冷器和散热器的前后布置形式相比,采用上下布置形式时,散热器冷却液出口温度基本不变,中冷器热侧出口温度降低了24%。中冷器和散热器上下布置形式有利于进一步降低发动机热负荷,减小发动机冷却模块尺寸,节约材料,优化发动机舱空间布局。  相似文献   

2.
为解决后置发动机商用车的多风扇-冷却模块匹配问题,以路试满足散热要求的中冷器、散热器和单个风扇串联布置的冷却模块为基础,利用散热器和风扇的风洞测试数据,对中冷器、散热器和多个风扇组成的不同冷却模块方案进行匹配分析。结果表明:在传统中冷器-散热器串联布置方案中,依靠增加电动风扇数量对散热性能提升的空间有限,难以满足散热需求;中冷器-多风扇,散热器-多风扇的分布式布置方案满足发动机标定转矩点的散热需求;在标定功率工况时,中冷器-风扇模块能满足散热需求;而通过进一步改进散热器和增加电动风扇的数量,散热器-风扇模块也可以满足散热需求。  相似文献   

3.
为解决后置发动机商用车的多风扇-冷却模块匹配问题,以路试满足散热要求的中冷器、散热器和单个风扇串联布置的冷却模块为基础,利用散热器和风扇的风洞测试数据,对中冷器、散热器和多个风扇组成的不同冷却模块方案进行匹配分析。结果表明:在传统中冷器-散热器串联布置方案中,依靠增加电动风扇数量对散热性能提升的空间有限,难以满足散热需求;中冷器-多风扇,散热器-多风扇的分布式布置方案满足发动机标定转矩点的散热需求;在标定功率工况时,中冷器-风扇模块能满足散热需求;而通过进一步改进散热器和增加电动风扇的数量,散热器-风扇模块也可以满足散热需求。  相似文献   

4.
在传统卡车热管理系统设计中往往将冷凝器布置在轻卡一侧,如今随着散热器性能的换热性能的提高,可以将冷凝器集成在散热器前方,以求降低整车成本与紧凑前舱布置,为优化采用集成冷凝器方案后的冷却模块散热性能,本文采用STAR CCM+软件对某款卡车前舱进行模拟计算,获取了不同前置冷凝器布置位置下的前舱中的速度场与温度场,在此基础上利用场协同理论对其换热效果进行了分析,确定将冷凝器布置在散热器中部为最优布置方案。  相似文献   

5.
鉴于由冷凝器、散热器和冷却风扇组成的汽车散热组件的布置直接影响整车的散热性能,本文中以提升进风量为目标,对某车型的冷凝器、散热器和冷却风扇三者间的距离关系进行优化。首先采用计算流体力学仿真,比较了冷凝器单独前移和冷凝器与散热器一同前移两种方案,发现后一种方案能更好地提升散热组件的进风量。然后采用正交试验方法,对冷凝器、散热器和冷却风扇的间距进行优化,获得散热组件的最佳布置方案。最后实车试验验证结果表明,与原车相比,优化后工况Ⅰ和工况Ⅱ下的散热器进风量分别提高了29.95%和4.54%,改善了整车的散热性能。  相似文献   

6.
受低温散热器、中冷器等散热元件布置位置的影响,流经散热元件的部分区域进风温度会升高、流速会降低,从而使冷凝器外侧风速和风温形成非均匀的分布状态。通过建立空调系统模型,从制冷量、排气压力、压缩机功耗等方面对比分析了这种非均匀气流与温度分布对空调系统性能的影响,研究了风速、风温、散热元件布置位置等因素对空调性能的影响程度。  相似文献   

7.
中冷器的布置优化是提升增压发动机性能的重要手段。结合某SUV匹配汽油增压发动机的动力不足问题,分析进气阻力及中冷后进气温度的变化对发动机性能的影响,通过台架试验对比2种中冷器布置方案引起的发动机动力性能的变化,结果表明,前置式中冷器相对顶置式在全速全负荷工况下中冷后进气温度降低17.4℃,发动机功率提升3%,扭矩提升5.2%。文章通过优化中冷器的布置为发动机性能提升提供了方向。  相似文献   

8.
为了优化汽车前端冷却模块设计,提高机舱热管理性能,针对某乘用车在怠速或拥堵路行驶下出现的空调频繁切断问题进行分析及研究,分别对汽车空调冷凝器前端不采取密封措施和采用海绵密封方案进行对比试验,结果表明冷凝器前端密封对于解决热气回流引起的空调切断问题效果明显。  相似文献   

9.
针对某商用车提升中冷器冷却性能进行发动机舱内流场改善研究,应用FLUENT 软件对发动机舱进行温度场和流场分析,提出优化改进方案,同时在试验室进行方案的整车热管理验证试验。分析与试验结果表明: 通过增加中冷器前端导流板,可有效提升格栅出口冷却流量的利用效率,在在爬坡工况下提升流经中冷器风量90%,中冷器温升下降8. 2 ℃,进气中冷后温度降低至71 ℃。  相似文献   

10.
为了研究封闭部分格栅和加装底护板对前端冷却模块性能的影响以及散热器空气侧热流场仿真结果与试验数据的相关性,建立了某排气前置车型的详细机舱热管理分析模型,应用多孔介质模型和旋转参考坐标系(Moving Reference Frame,MRF)方法建立了换热器和散热风扇的计算模型,对前端冷却模块空气侧流场和热场进行仿真并将部分仿真结果与试验数据进行了比较。分析结果表明,封闭部分格栅和加装底护板均能增加中冷器进风量;散热器前风速平均值、前部和后部的温度平均值与试验值相比误差均小于10%;考虑局部高温辐射并与机舱热流场的耦合模拟能大大提高热分析精度。  相似文献   

11.
欧Ⅲ排放实现后,发动机普遍采用增压中冷式满足发动机的进气流量、温度的要求~([1])。其中中冷温升是指在中冷器热侧出气温度和环境温度的差值。一般发动机对中冷温升有一个上限值要求,中冷温升超过上限值时,会导致发动机限扭、动力性下降、排放超标等问题。本文从设计理论的角度对某轻卡车型中冷温升超标的原因进行分析,最终通过优化整改彻底解决此问题。  相似文献   

12.
安装参数影响散热器模块性能的风洞研究   总被引:1,自引:0,他引:1  
为解决车辆冷却系统中多散热器模块的匹配问题,在风洞试验台上研究了间距和热介质进出口位置对某散热器模块性能的影响。试验散热器模块的第1排为中冷器和液压油冷却器,第2排为冷却水箱,第3排是变矩器油冷器。试验结果表明,增大间距可以提高散热器模块总的散热量,但对模块中单个散热器的影响差异很大;调换散热进出口位置有利于提高散热器的换热性能;调整以上两结构参数对模块的总压差影响不大。  相似文献   

13.
结合某轻型卡车的开发,运用一维热流体仿真软件Flowmaster对中冷系统性能进行了仿真分析,采用调整中冷器布置位置、优化中冷器结构、加大风扇等方案对系统性能进行优化,最后通过整车热平衡试验对优化方案进行了验证。结果表明优化方案满足中冷系统的性能要求,与仿真结果相比最大偏差约为5%。通过本文的探索,得到了一种经济便捷的中冷性能前期性能评估方法。  相似文献   

14.
散热器风扇控制系统包括冷却风扇和A,C冷凝器风扇控制。由于风扇的工作及其状况实行了电子模块控制,因而发动机能更好地保持在最佳的温度下工作。风扇控制系统各部件位置如图76所示。  相似文献   

15.
针对汽车散热器在实车环境中内、外流场不均匀对散热性能影响无法判断的问题,提出采用场协同原理分析对流散热结果。首先建立发动机舱前端冷却模块模型,结合已有的经验公式和数值仿真方法对模型进行简化;其次运用多尺度耦合分析散热器在内部热介质流场和外部冷介质流场下的流动传热特性,并通过试验对仿真模型进行验证;最后利用场协同原理分析散热器散热特性,并提出内流场优化思路。优化结果表明,在散热器最为严苛的工况下,散热管表面温度标准差提高了29.01%,出水温度降低了1.32℃。  相似文献   

16.
采用GT-Cool软件建立了某增压中冷柴油机冷却系统的仿真模型,并通过试验数据对模型进行了校核.对不同中冷方案的特点进行了对比分析,得出了两级中冷方案的优势在于以中冷器体积增大为代价来换取散热器体积的减少,从而减小辅助系统功耗.在此基础上针对两级中冷串联方案进行了仿真计算,得到了两级中冷性能随冷却液流量、增压器压比等参...  相似文献   

17.
将增压空气加以冷却的增加几乎在所有的柴油机上而且也越来越多地在汽油机上获得应用。这种增压用来提高发动机的功率并降低排放和燃油耗。采用新的冷却液冷却的中冷方案可使增压空气的压差比目前空气冷却的系统有所降低,汽车前端的安装空间可以缩小,同时响应时间也可缩短。本文以实例介绍Behr(贝尔)公司冷却液冷却的中冷方案、增压空气/冷却液-冷却器的结构型式及其优点。  相似文献   

18.
通过对某改款车的介绍,阐述了目前在该车型中常出现的问题——散热器框架动刚度不足。针对该问题进行分析与解决,得出由于散热器框架拐角处连接强度不够,因此在散热器框架的拐角处增加连接板是一种有效的解决方法,为后续车型的改进提供了设计方向。同时,考虑改款车的生产管理及每次散热器框架的改动问题,简述了将散热器框架作为一个整体,即前端模块,不同类型的改款车采用不同结构前端模块进行组装的设计理念。  相似文献   

19.
根据插电式城市客车开发项目需求,采用散热器与中冷器并列布置的形式,完成发动机冷却系统及电机/控制器冷却系统的匹配设计,并通过整车转鼓试验进行验证。  相似文献   

20.
乘用车前端进气对发动机舱内的流动和散热性能影响很大,文章基于三维数值分析软件Fluent建立了某乘用车三维数值模型,分析了原车型在爬坡工况下发动机舱内的流动和换热性能,发现在该工况下通过散热器的冷却空气流量偏低,未达到目标值。在分析原车型速度分布后,发现可以通过优化挡板以提高格栅和冷凝器之间的密封性能。验证结果表明,将散热器的冷却空气流量增加5%,散热器的换热量可提高4%,达到了预期的目标值,起到改善机舱散热性能、提高热管理水平的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号