首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
当公路路基挡土墙填筑时,挡土墙受到土体的侧向挤压作用,特别是在碾压时会产生巨大的侧向土压力,导致挡土墙的倾斜。结合盐城示范公路路基挡土墙工程的现场实测数据进行研究,发现在碾压时水平和竖向土压力均有很大增加,但随着压路机的驶离,两者均瞬间减小,但竖向减小的幅度大于水平向;位移的变化随填土高度增加而增加,且后期增加较快。  相似文献   

2.
公路的桥台一般要求在路堤施工完成后施工,但是为了缩短工期,公路的桥台施工常常先于路基填筑。路基填筑碾压对桥台产生挤压作用,不利于桥台稳定。该文结合盐城市范公路某桥台路基填筑工程,现场监测路堤分层填筑碾压过程中桥台上的土压力和位移,根据实测数据分析结果显示,碾压对竖向土压力几乎没有影响,但大大增加了水平土压力。与土压力理论计算值比较,竖向土压力可以用土压力理论公式计算,水平土压力随填土高度增加并不是呈线性增长,当填土到达桥台高度的一半后便不再增长。  相似文献   

3.
为了进一步完善非极限状态主动土压力计算中的不足,并就填土张拉裂缝深度的理论计算展开研究,以复杂工况下刚性挡土墙为研究对象,综合考虑挡土墙变位模式、填土种类、墙背与填土面倾角、墙土摩擦、填土张拉裂缝影响及超载作用等因素,基于薄层单元法,并结合墙土相互作用强度参数与位移的非线性关系,推导得到一种非极限状态主动土压力计算公式;通过与文献特例、试验数据比对,验证了所构建公式的合理性。当墙背填土为黏性土时,利用土压力计算公式及挡土墙模型中的几何关系,建立了填土张拉裂缝深度与挡土墙位移的关系方程,并绘制出不同影响因素下裂缝深度随挡土墙位移的变化曲线,其变化规律与模型试验结果基本吻合。研究结果表明:考虑因素的增多使得非极限状态主动土压力计算过程变得复杂,但假设条件与实际工况更加接近,其计算误差得以降低,且通过迭代法计算方程可以得到满意的数值解;张拉裂缝开展深度随挡土墙位移呈非线性增长,在位移初期增长较快,而接近极限位移时裂缝开展趋于稳定;不同因素对于填土张拉裂缝开展产生的作用存在差异,其中填土内摩擦角和黏聚力影响显著,超载和填土面倾角影响次之,墙背倾角影响最小;降低填土抗剪强度,增加超载以及选择仰斜式挡土墙均有助于抑制张拉裂缝的开展。  相似文献   

4.
挡土墙水平土压力非线性分布试验研究   总被引:1,自引:1,他引:0  
结合一山区高速公路多个挡土墙墙背土压力的监测数据,对挡土墙不同深度处的土压力大小分布规律进行了研究。结果表明:不同深度的挡土墙土压力随上部填土高度增加的快慢不同,愈接近墙顸,增加越快;水平土压力沿墙高呈非线性分布,其值介于理论静止土压力和被动土压力之间,在墙身的3/4以下,与静止土压力接近;在墙身的1/2以上,与理论垂直土压力接近。  相似文献   

5.
应用有限元程序建立了考虑地基固结的挡土墙后土压力分析平面应变计算模型,研究了等效交通荷载作用和工后固结阶段挡土墙土压力与土体水平位移分布规律。计算结果分析表明:挡土墙与土体之间的相对位移决定了土压力分布规律;在外部荷载作用下挡土墙形成刚体旋转与平行移动的混合位移模式,该模式决定了土压力沿深度的变化规律;固结变形导致的土压力与水平位移变化与荷载作用下的土压力与水平位移变化规律类似但方向相反。  相似文献   

6.
有限填土土压力分析中常用水平薄层分析模型以期得到墙后土压力强度分布公式,而水平薄层模型中其实际受力情况是土压力计算中最关键之处。为得到水平薄层各点实际受力情况,在现有理论基础上,首先基于墙土间摩擦必然引起挡土墙后土体主应力方向发生偏转的力学机理与特点,引入主应力迹线概念,探讨了挡土墙后主应力迹线型式,得到土体各点的主应力偏转规律,最终得到各点实际受力情况。然后在此基础上,改进了水平薄层法受力模型,建立两侧墙背垂直且粗糙、填土面水平的有限土体主动土压力计算方法。最后通过与现有有限土体挡土墙土压力计算理论进行分析,验证了本文土压力理论的合理性与可行性。  相似文献   

7.
为求解挡土墙被动土压力破裂曲线和土压力分布,取墙后填土的水平微分单元为研究对象,根据水平方向和竖直方向的力平衡以及力矩平衡,推导出基本微分方程。再通过求解出土压力分布表达式,推导出总的土压力泛函,利用欧拉方程求解泛函极值,其极大值就是被动土压力,极值曲线即是土体的破裂曲线。最后,利用基本求解思路,提出了挡土墙光滑情况下的滑裂曲线及土压力分布形式。  相似文献   

8.
基于案例和监测数据,通过建立数值模型,分析了桩承扶壁式挡土墙复合结构的位移、应力、土压力随分层填土过程的变化规律。分析结果表明:桩承扶壁式挡墙复合支挡结构可有效控制其自身水平与竖向位移;桩与挡土墙地基土刚度差异对结构水平位移有一定的控制作用;挡土墙与桩的连接处易出现应力集中现象;挡土墙墙背水平土压力分布符合常规的土压力理论,从墙底到墙顶土压力逐渐减小。  相似文献   

9.
通过对某核电站进厂公路塑料排水板超载预压处理路段调研工程地质条件,得到土体参数,采用等价竖墙法建立有限元模型,分析软基沉降过程中路堤有效应力、超孔隙水压力和沉降的变化情况。结果显示在填土开始至达到设计填土高度过程中,土体内的超静孔隙水压力增大。超静孔隙水压力的增大会导致路基土体的有效应力减小,进而降低土体的抗剪强度,影响路基稳定。因此路基填筑过程中应加强沉降以及侧向水平位移的监测,确保路基的稳定。同时通过现场沉降监测的结果验证了有限元模型的合理性,证实等价竖墙法用于解决塑料排水板超载预压处理下公路软基沉降模拟的合理性。  相似文献   

10.
针对经典的Rankine或Coulomb土压力理论不适用于山区挡土墙或邻近既有地下室基坑工程中常常遇到的墙后为有限宽度填土的情况,以墙背和稳定岩质坡面间为有限无黏性填土的刚性挡土墙为研究对象,假定在平面应变条件下,墙体平移使得墙后土体在极限平衡状态时出现通过墙踵的直线形或折线形滑裂面,且其中形成圆弧形土拱,考虑滑动土楔内水平土层间存在的平均剪应力,引入水平层分析法,得到非线性分布的主动土压力表达式。通过与文献中离心机模型试验结果的对比,验证所提方法的合理性,并在此基础上,以三角形和矩形断面有限填土挡土墙为例,探讨墙背倾角、岩质坡面倾角、墙土摩擦角、岩土摩擦角、填土内摩擦角或填土宽度等参数对主动土压力的影响。计算结果表明:该方法合理可行;有限填土时主动土压力沿墙高一般为非线性分布,且其合力作用点的位置一般不在墙高的1/3处;当填土宽度较大时,主动土压力合力大小有可能大于Coulomb土压力理论计算值,而且对于矩形断面有限填土的挡土墙,滑裂面的倾角都小于Coulomb土压力理论值。  相似文献   

11.
运用有限元法对L型挡土墙在不同土性的填土情况下分层逐级填筑进行了模拟,重点分析了填料强度对土压力的影响、挡墙基底应力分布情况和材料刚度对墙体受力的影响规律,结果表明:当砂性填土φ>30°,墙背水平侧压力将趋于相等; 粘性填土c>20 kPa时,墙背水平侧压力不再受φ值影响而趋于相等;无论是砂土还是粘土,当填土材料强度达到一定程度时,其挡墙外部检算安全系数将在一个稳定值附近波动,墙背土体未达到极限平衡状态;挡墙基底应力分布呈“马鞍形”,基底平均应力[σ]<140 kPa;地基刚度对土压力影响比填料小。  相似文献   

12.
为了研究加筋土挡墙在路基面荷载作用下的受力和变形特征,通过拉拔与原位荷载试验,进行了加筋土墙体水平土压力、墙面水平变形及拉筋应力等分布规律的研究。结果表明:筋材应力沿其长度方向呈单峰值分布,峰值距墙面1.5 m处;加载初期墙面水平位移沿墙高呈反"S"形曲线分布,极值位于墙顶和中下部;路基面荷载作用主要影响挡墙上部土压力分布,相应的侧向附加土压力近似呈倒三角分布;由于加筋土的扩散、卸载成拱效应的影响,使得竖向附加土压力向下衰减比传统挡土墙更快。  相似文献   

13.
挡土墙是一种保证路基与边坡土体稳定的构造物,它的作用是防止路基边坡土体发生位移与崩塌,对挡土墙安全性的研究是工程设计的基础性工作之一。对此,以仰斜式挡土墙为例,结合工程实践建立了分析模型,模型中考虑了挡土墙高度、基础埋深和墙顶填土高度的因素影响。采用理正深基坑6.0软件计算,并对计算结果进行敏感度指标分析;最后总结仰斜式重力挡土墙设计的要点。  相似文献   

14.
利用FLAC-3D建立起三维有限差分衡重式挡土墙模型,研究分析了在墙后填土自重荷载和列车动荷载作用下,挡土墙墙背土压力变化规律,并分析了挡土墙水平作用力、抗滑和抗倾覆稳定系数随车速的变化规律。结果表明:荷载对挡土墙的影响主要集中在上墙的中下部,车速对水平土压力作用点位置以及挡土墙稳定性影响不大。  相似文献   

15.
半填半挖路基挡土墙后填土属于有限填土,当挡土墙为重力式且修建在坚硬的基岩上,挡土墙刚度大变形小,墙后填土处于弹性平衡状态,土压力按照有限填土的静止土压力计算更加合理.基于已激发内摩擦角的概念,通过对墙后填土应力莫尔圆的分析,建立了半填半挖路基挡土墙后有限填土静止土压力的计算方法.针对挡土墙墙背和基岩倾斜面与水平面夹角不同,以及与填土之间摩擦角不同的各种情况,分别给出了静止土压力系数的计算公式.工程设计中应根据实际情况合理选择相应的公式进行土压力的计算.  相似文献   

16.
魏甲儒 《路基工程》2007,9(3):77-79
通过对挡土墙、墙背填土及地基的性质、边界条件等进行三维仿真模拟,对三种不同荷载组合形式下,不同墙高的挡土墙土压力及位移进行计算分析。  相似文献   

17.
通过弹性—非线性三维有限元程序,计算分析了在墙背填土自重荷载、换算土柱静荷载和列车动应力荷载作用下,墙高的变化对重力式挡土墙墙背土压力大小及分布形式的影响。  相似文献   

18.
加强路基工程抗震设计是确保雅万高铁工程质量安全的重要方面。通过文献调研、对比规范、振动台试验和数值分析,结果显示:路基工程震害包括路基面变形或开裂、路基失稳、支挡结构变形或失效、崩塌、落石、滑坡;挡土墙和墙后填土均存在动力放大效应,土压力静分量数值和分布均较接近于库仑主动土压力理论值,地震土压力实测值大于M-O法理论值;墙高大于4 m时可能产生共振;不同规范抗震设计参数不同,雅万高铁路基抗震设计采用规范《铁路工程抗震设计规范》(GB 50111—2006),岩土参数取值时宜适当增加安全储备。  相似文献   

19.
考虑土拱效应的非极限主动土压力计算方法   总被引:2,自引:0,他引:2  
针对平动模式下的刚性挡土墙,提出了考虑土拱效应的非极限主动土压力计算方法。考虑墙体平动位移对墙后填土内摩擦角与墙土界面上的外摩擦角的影响,建立了内外摩擦角与位移之间的关系式。对未达到极限位移的挡土墙,分析墙后小主应力拱的应力状态,并结合位移与摩擦角之间的关系,把主动侧土压力系数与挡土墙位移联系起来,将其用于水平微分单元法求解平动模式下挡土墙非极限主动土压力,给出了考虑土拱效应的非极限主动土压力分布、合力及作用点的理论公式,并与不考虑土拱效应的非极限主动土压力计算方法进行了比较。结果表明:该方法可行有效;土压力合力大小相等,但合力作用点与土压力分布存在明显差别;研究成果可为相关工程提供参考。  相似文献   

20.
路基悬锚式挡土墙是一种新型的挡土墙,其墙背土压力分布与常规挡土墙墙背土压力分布规律不同,不能套用现有的公式进行计算。根据其受力特点,结合项目研究的需要和依托工程的实际情况,确定了以墙高8,9,10 m这3种工况对路基悬锚式挡土墙的墙背受力情况及土压力分布情况进行现场试验和跟踪检测。通过实体工程的实测数据及其结构特点对悬锚式挡土墙的墙背土压力进行了分析,并与墙后土压力设计值及修正后的公式计算值进行了对比。结果表明:路基悬锚式挡土墙各测试点的墙背土压力随时间逐渐增大并趋于稳定,沿墙高呈3段式非线性分布;墙背土压力近似分布图形可以参照现有锚定板挡土墙的计算方法得出,但需进行修正,土压力系数宜取1.2~1.4;为提高挡土墙墙背的受力均匀性及挡墙的整体稳定性,第1层锚杆高度与底板的距离宜为挡墙建筑高度的1/3且距离底板不宜大于2.5 m,各锚杆层间高差宜为2.5~3 m;墙背最上层锚杆位置由于受土压力较小,因此最上层锚杆布设高度宜为距墙顶1/3高处,且适宜高度为2~3 m;悬锚式挡土墙的双层锚杆与锚定板型式建筑高度宜为6~10 m,3层锚杆与锚定板型式建筑高度宜为10~12 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号