首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
由于软岩单轴抗压强度普遍小于15MPa,多以破碎、松散和强风化状态赋存且具有可塑性、遇水膨胀性、流变性等特点,隧道开挖穿越软岩地段时,常伴随围岩变形量过大、支护出现病害等问题,严重制约了隧道结构的安全与稳定。通过监控量测技术对隧道软岩大变形段施工过程中围岩和支护结构受力位移情况进行动态监测与回归分析研究,得出隧道拱顶最大沉降量为257mm,需要提前采取围岩加固措施,在开挖第19d时施作二衬能有效抑制围岩和初支继续变形,且应力应变监测表明二衬是安全稳定的。  相似文献   

2.
断层带破碎围岩是一种特殊的软岩,在高地应力环境下施工常出现大变形、坍塌等灾害,严重影响施工安全和施工进度.文中以某高地应力区穿越断层带的公路隧道工程为例,对台阶法施工过程进行数值模拟,重点分析了预支护强度、开挖步长及台阶长度3个因素对断层带隧道围岩拱顸、拱腰及拱脚变形的影响规律,结果表明3个因素都存在最优值使得围岩变形更加合理;综合数值模拟结论,提出了一种安全、快速、经济的施工方案.  相似文献   

3.
围岩大变形是软岩隧道建设中的常见灾害,由此引起初支破坏、工程延期、造价增加,给施工安全带来较大威胁。以十房高速公路通省隧道大变形为背景,从岩性、岩体塑性变形、地应力等方面分析软岩隧道的变形机理,并利用FLAC3D模拟通省隧道的开挖支护和围岩变形过程,最后提出了应对大变形的控制措施,以期减少灾害、指导施工。  相似文献   

4.
张健儒 《隧道建设》2014,34(8):749-753
如何在软弱围岩地质条件下安全快速地修建长大隧道是当前隧道工程界面临的重要课题之一,尤其是当隧道穿越高地应力软弱围岩时,常常形成大变形等地质灾害,严重影响施工安全和进度。通过对软弱围岩工程地质特性、软岩隧道变形机制及变形控制基本理念进行分析,并结合相关工程实例提出软岩隧道支护结构安全稳定性评判标准及施工应采取的相应对策。认为:1)软弱围岩隧道由于支护参数、施工方法选择不当,支护结构强度和刚度不足以抵抗较高的围岩压力时,往往会出现结构大变形和破坏;2)软岩地段初期支护承受施工期间全部荷载,二次衬砌需承受后期围岩流变产生的荷载,软岩隧道衬砌应通过增设钢筋、加大厚度等方式增加结构强度;3)超前支护与加固技术可提高围岩的自承能力并减小作用在支护结构上的荷载,且应当成为当前软弱围岩隧道施工技术研究的发展方向;4)在高地应力山岭隧道方面,应进一步开展施工阶段地应力测试,以利于针对性地选择施工方法和支护参数。  相似文献   

5.
《公路》2021,66(8):350-354
在隧道建设过程中会遇到上软下硬的复合地层,如何控制复合地层隧道开挖对围岩和地层变形的影响成为亟待解决的工程问题。青岛地铁十三号线(R3)二期工程在施工中,隧道穿越上覆地层以土层为主、下部以岩层为主的"上软下硬"复合地层。通过采用数值模拟和现场监测并反馈的方法对青岛地区"上软下硬"复合地层双线平行隧道围岩变形特征和地层移动规律进行研究。研究结果表明:隧道在穿越均一或复合地层时,围岩和地表会产生不同程度的变形;隧道围岩软硬岩比例越高,隧道拱顶下沉、隧道底板隆起和地表沉降量也越大,且以先行隧道拱顶沉降最为显著,在施工中应加以重视。这为双线平行隧道在上软下硬复合地层施工提供了一定的指导意义。  相似文献   

6.
兰渝铁路两水隧道高地应力软岩大变形控制技术   总被引:5,自引:0,他引:5  
赵福善 《隧道建设》2014,34(6):546-553
兰渝铁路两水隧道地质条件极为复杂,洞身围岩为千枚岩及炭质千枚岩,属极软岩,受高地应力影响,施工时发生了挤压性大变形,变形和破坏极为严重。以现场测试和理论分析为手段,结合隧道变形特征,探索和研究了适合两水隧道的软岩变形控制技术,并得出以下结论:1)软岩隧道的变形特性及稳定性(塑性区)取决于地应力、围岩的力学特性、开挖断面等,且与围岩的支护条件密切相关;2)通过采用加大预留变形量、加大支护刚度、多重支护,优化施工方法、适时施作二次衬砌等手段有效地控制了大变形,较好地解决了两水隧道高地应力软岩施工问题。在此基础上,提出了软岩隧道大变形分级标准及其对应的支护参数。  相似文献   

7.
刘雪冬 《隧道建设》2015,35(Z2):131-137
软岩大变形问题是目前地下工程界的主要研究方向之一,复杂的地质条件,围岩因素的不确定性,岩石变形机制的复杂性,施工方法和技术的选用等因素都会对隧道围岩的稳定性产生不利的影响。兴源隧道位于我国东北高寒高纬度地区,隧道穿越炭质泥岩地层,属于软岩大变形偏压隧道,针对该类地质环境下出现的地质灾害情况,从围岩变形原因分析着手制定围岩变形控制基准,以此为依据综合采取一系列的措施控制围岩的变形同时提高工程施工进度,包括如开挖设备革新、长大锁脚的使用等措施,为该类地质隧道的施工提供了新的思路。  相似文献   

8.
王小林  黄彦波 《隧道建设》2018,38(10):1621-1629
为解决高地应力软岩隧道在施工过程中遇到的难以控制的围岩大变形问题,依托国内兰渝铁路木寨岭隧道与瑞士圣哥达基线隧道,采用对比分析方法,从软岩大变形机制、高地应力软岩隧道围岩分级及变形控制技术3个方面对两隧道进行对比,得出如下结论: 1)高地应力软岩隧道围岩大变形是在岩性、地下水、地应力场、围岩地质构造等多种因素共同作用下,因开挖卸荷、应力二次分布引起围岩发生塑性剪切滑移所致; 2)在高地应力软岩分级方法上,兰渝铁路木寨岭隧道与圣哥达基线隧道均采用了BQ法,但兰渝铁路木寨岭隧道分级更全面,圣哥达基线隧道分级更具针对性; 3)在高地应力软岩情况下,圣哥达基线隧道采用的新意法的全断面施工方法在施工管理和成本控制上要优于兰渝铁路木寨岭隧道采用的台阶法。  相似文献   

9.
二次衬砌施作时机一直是高地应力软岩隧道工程设计与施工过程中面临的关键技术难题之一。为此,依托在建成都-兰州铁路典型千枚岩隧道工程,基于隧道变形长期监测结果,分析高地应力软岩隧道变形时程特点,考虑软岩隧道荷载特点,确定了二次衬砌施作时机原则;考虑隧道测量丢失变形,提出软岩隧道第1稳定阶段变形量确定方法;通过现场实测变形数据统计回归,基于一定保证率确定不同大变形等级和不同断面下的软岩隧道二次衬砌施作时机,并进行现场试验验证。研究结果表明:适当刚度的初期支护可以实现高地应力软岩隧道前期变形稳定,但无法保持围岩长期稳定,二次衬砌应该在初期支护变形达到第1稳定阶段后施作,既可以减少二次衬砌荷载,又可以控制围岩变形;采用指数函数拟合软岩隧道变形具有较好的相关性,但参数差异性较大,同时在确定隧道第1稳定阶段变形量时应考虑测量丢失变形;轻微、中等大变形段拱顶下沉变形速率小于0.1~0.2mm·d-1,边墙收敛速率小于0.5mm·d-1,严重、极严重大变形段拱顶下沉变形速率小于0.4mm·d-1,边墙收敛小于0.6mm·d-1,即可进行二次衬砌施作;轻微大变形段、中等大变形段和严重大变形段分别在隧道开挖45~55 d,55~60 d和80~90 d后达到二次衬砌施作标准。  相似文献   

10.
李贤  蔡林真 《中外公路》2019,39(3):189-192
中和村隧道工程地质情况复杂,施工难度大,围岩级别为Ⅴ级,以全~强风化泥岩为主,隧道周边岩体自稳能力弱,需提前施作超前支护,初期支护须及时支护,以免产生过大的塑性变形,从而影响二次衬砌的正常施工,甚至出现工程事故。大变形软岩隧道的围岩变形规律与普通硬岩隧道的变形规律大不相同,而在变形-空间-时间效应复杂多变的情况下,隧道二次衬砌最佳支护时机的选择非常重要。该文通过对围岩蠕变特性的理论-位移公式计算和现场监控量测数据的回归分析,得出了该隧道围岩变形规律和二次衬砌最佳支护时机的参考范围。  相似文献   

11.
硬质破碎岩体中隧道的支护通常采用提高支护刚度的设计思路,虽然该方案在一定程度上可避免施工风险,但也存在着无法有效利用围岩自承能力、初期支护大变形、二次衬砌开裂甚至破坏等一些问题,影响隧道的使用安全。基于以上背景,通过研究提出一种新的适用于不良地质条件中隧道的支护思路和方法,即采用“锚杆+内压(支撑)构件”形成锚肋组合支护体系作为围岩加固手段,代替传统的高支护刚度策略。构想通过理论推导、数值仿真、模型试验和现场试验等手段,研制形成适用于硬质破碎岩体中隧道的柔性支护。  相似文献   

12.
板岩隧道顺层塌方分析及预防失稳措施研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张卫霞 《隧道建设》2017,37(Z2):218-224
为避免板岩隧道围岩楔形体掉块和顺层塌方的发生,针对板岩的力学性质和变形特性,从隧道施工方面对板岩隧道围岩的工程特性和易形成塌方的地质构造类型进行总结,并以半山隧道初期支护长段落顺层塌方为例进行深入的分析和研究。结果认为:当顺层构造岩层和节理产状与隧道走向夹角较小、多组节理相互切割与岩层面形成不利结构面组合长段落斜穿隧道时,受施工开挖爆破震动、地下水浸润、重力作用以及大断面开挖形成临空面的影响,围岩及支护结构局部薄弱处出现失稳破坏,由于牵引作用不断扩大并持续发展造成较长段落的坍塌。最后,提出了顺层构造、节理密集带和隧道开挖后不利结构面组合对围岩稳定性的影响分析方法,针对板岩地质隧道施工提出了预防围岩失稳的措施和支护结构的优化措施。  相似文献   

13.
李贵民 《隧道建设》2019,39(9):1494-1499
以下穿岩堆段的丽香铁路黄山哨隧道为工程依托,对岩堆段地表开裂及洞内初期支护边墙严重变形的问题进行研究。地表埋设6根测斜管监测地表位移情况,洞内布置3个断面进行围岩压力、钢架内力、二次衬砌内力、初期支护与二次衬砌间的接触压力、锚杆轴力量测。在分析现场岩堆段洞内外受力机制及原因的基础上,根据数值计算结果优化二次衬砌断面型式及进一步加大二次衬砌厚度及配筋。采取以下措施控制隧道岩堆段变形: 1)地表岩堆土石接触面开裂处增设截排水措施; 2)加大隧道初期支护钢架型号及加长岩堆侧边墙径向系统锚杆; 3)加大隧道边墙轮廓曲率并优化隧道二次衬砌型式为圆顺型; 4)隧道预留变形量加大至30 cm; 5)隧道二次衬砌内净空预留50 cm补强空间; 6)隧道拱部设置42小导管超前支护。现场岩堆段采取以上措施后已顺利施工通过,根据洞内外监测结果显示,结构在安全可控范围内。  相似文献   

14.
高地应力大断面软弱围岩隧洞开挖变形控制技术   总被引:1,自引:1,他引:0  
董宁 《路基工程》2012,(5):162-165
在锦屏二级水电站C2标引水隧洞绿泥石软岩洞段施工中,针对软弱围岩隧道在开挖后支护未完成前即发生较大变形,侵入混凝土衬砌断面,导致二次扩挖的情况,分析其变形的原因,通过优化支护措施,预留合理变形量,采用锚索、锚筋桩等柔性支护体系,有效控制了软岩变形,确保了施工安全和工期目标。  相似文献   

15.
针对高地应力软岩隧道开挖时围岩大变形问题,以某隧道圆形扩挖段为背景,采用三台阶法施工和3层初期支护+小导管注浆+二次衬砌的复合结构支护,并通过现场监测、数值模拟和理论计算研究开挖过程中的围岩变形及支护结构受力。结果表明:上、中台阶开挖时的隧道围岩变形速率较大,在仰拱封闭和第3层初期支护施作完成后,隧道变形趋于稳定;采用3层初期支护结构可有效改善隧道周边围岩应力,3层初期支护基本都是受压结构,拱腰和边墙处竖向应力最大,拱顶处水平应力最大;二次衬砌拱腰、拱顶、拱脚和边墙处安全系数均大于规范要求,保证隧道结构安全。  相似文献   

16.
隧道软弱围岩的卸荷特征与大变形控制研究   总被引:1,自引:0,他引:1       下载免费PDF全文
隧道软弱围岩大变形往往表现出时效性的流变变形特征,对此特征提出了一种环状间隔式衬砌与主动性卸载相结合的永久性支护理念。在合理的简化下建立了隧道衬砌段与非衬砌段的隧道力学分析模型,并在围岩常用蠕变模型、Mohr-Coulomb强度准则和非关联塑性流动法则基础上,对支护段围岩进行黏弹塑性求解,得到了围岩的黏弹塑性变形位移解。在参考现有围岩应力释放模型并确定无支护段围岩应力释放系数之后,对无支护隧道段围岩进行求解,得到了围岩的黏弹塑性变形位移表达式,建立了未支护洞段围岩位移与支护洞段围岩压力的关系。算例分析表明,理论分析与实际工程中围岩的应力和位移的变化是相吻合的。  相似文献   

17.
为研究我国西南部山区隧道施工期支护结构所面临的重大问题,将雅安—康定、汶川—马尔康高速公路的典型隧道作为案例,归纳总结施工期存在的高地应力、软弱围岩、断层破碎带、次生地质灾害等潜在危险源,通过现场实测数据深入分析不同危险源环境下支护结构体系的力学行为特征。研究结果表明: 1)当隧道穿越软弱围岩时,围岩强度低、自承载能力差,接触压力、钢拱架应力均显著高于普通围岩隧道,二次衬砌分摊荷载比例显著上升; 2)当隧道穿越断层破碎带时,支护结构受力需要较长时间才能稳定下来,其力学行为呈现出3阶段演化规律,前期快速降低、中期缓慢降低、后期基本稳定; 3)当隧道洞口穿越松散堆积体时,坡体稳定性易受到扰动,其支护结构力学行为具有显著的偏压特性,围岩压力主要集中在深埋侧; 4)高地应力与围岩强度联合控制着围岩稳定性与支护结构体系的力学行为,高地应力硬岩隧道也具有一定的流变时间效应,但由于硬质围岩的强度较大、稳定性较好,支护结构受力相对较小,安全储备较高; 5)高地应力软岩隧道的围岩压力与结构受力显著升高,其支护结构力学行为在施工期便呈现出明显的流变特性,开挖约200 d后,仍然保持着缓慢增长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号