首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 513 毫秒
1.
陈双庆 《公路》2015,(2):75-79
为研究混合梁钢梁加劲过渡段受力特性,以某独塔混合梁自锚式悬索桥为研究对象,选取包含钢梁加劲过渡段在内的主梁节段,运用大型通用有限元软件ANSYS建立"实-壳"混合有限元模型,并对其进行局部仿真分析。仿真结果表明,在最不利负弯矩工况下,钢梁加劲过渡段各板件的Mises应力最大约为90 MPa,横梁连接区域各板基本不参与受力。在此基础上,对4种不同钢梁过渡段加劲构造的交界处进行应力集中程度分析,仿真结果表明,"U肋内嵌T肋"构造的交界处应力集中程度最大,"混合加肋"构造的交界处应力集中程度最小。  相似文献   

2.
九江长江公路大桥混合梁结合段构造分析   总被引:6,自引:2,他引:4  
九江长江公路大桥为主跨818m的大跨径单侧混合梁斜拉桥,其钢梁加劲过渡段采用T肋加劲、同时在端部增设板肋加劲的新型过渡方式。为研究结合部连接件受力分布及内力分担比例,选取包含结合段的主梁节段,建立考虑钢-混凝土间相对滑移和接触的实体-板壳有限元计算模型,对结合段受力性能进行分析。结果表明:承压板分担了约70%的轴压力,过渡段刚度变化较为均匀,应力过渡平顺,该桥结合段受力合理。  相似文献   

3.
斜拉桥主梁的钢-混结合段构造复杂,受力状况不明晰,是斜拉桥设计中关键节点。以奉贤区金汇港大桥为工程背景,对中、小跨径斜拉桥的主梁进行了构造设计与分析,首先通过MIDAS Civil软件对全桥空间杆系模型进行分析,确定主梁钢-混结合段的内力状况,再通过有限元分析ANSYS建立钢-混结合段的实体空间模型进行分析,明确该区段钢梁板件、加劲肋以及混凝土的受力状态。分析表明:该结合段构造合理,构件应力水平总体较低,安全储备良好。  相似文献   

4.
以南宁英华大桥为工程背景,分析单主缆悬索桥主梁顶推施工技术的原理和实施过程,采用有限元,计算分析了在顶推施工中钢箱梁的力学特征和局部受力情况,评价了钢箱梁顶板、底板、横隔板和纵隔板在顶推过程中的受力情况及其安全性。结果表明:在顶推施工过程中,钢箱梁顶板、底板和横隔板等部位局部应力较大,当钢箱梁顶推最大悬臂35 m、导梁25 m时,各部件所受应力最大,步履机支点的反力最大,为最不利工况,最大应力出现在纵隔板横向加劲肋与底板横向加劲肋相交处,尽管满足安全要求,但在进行设计时应进行加强处理,以免应力集中。  相似文献   

5.
宋闯  杨雨豪  王永峰  于振刚 《公路》2022,(5):170-176
锚拉板式钢结构索梁锚固构造广泛应用在大跨径斜拉桥中。传统锚拉板焊缝末端圆弧过渡段处及锚管末端存在较大的应力集中现象,易形成塑性区,从而引起受拉破坏。为了进一步明确大跨径斜拉桥锚拉板的受力规律,以我国西南地区某跨径组合为200 m+480 m+200 m的双塔三跨组合梁斜拉桥为背景,建立有限元计算模型,对传统构造的锚拉板应力和优化后锚拉板应力进行对比分析研究。结果表明,改进后的构造对改善锚拉板主要板件的受力及解决圆弧过渡段及锚管末端应力集中问题具有显著作用。同时,对优化后的构造围绕锚拉板圆弧过渡段的半径、锚管长度、中部空间长度和后锚拉板长度进行了参数敏感性分析,提出了进一步解决锚拉板应力集中问题的方法,可有效保证锚拉板结构的受力安全。  相似文献   

6.
采用有限元分析的结构优化设计方法对钢箱梁桥面铺装体系进行整体优化研究。建立钢桥面铺装体系的有限元模型,选择包括钢板厚度、梯形加劲肋刚度、横隔板间距、铺装厚度等结构参数作为设计变量,建立铺装最大拉应力、铺装与钢板层间最大剪应力、加劲肋挠跨比、钢桥面板最大拉应力等指标的约束条件,采用零阶方法进行优化计算。结果表明,优化设计可以节省材料,降低造价。通过减小梯形加劲肋间距和横隔板间距,增大桥面板厚度和梯形加劲肋高度,可改善铺装的受力状况。  相似文献   

7.
金杰  张君琳  李业  谢增奎  杨立坡 《公路》2023,(1):111-117
以聊城中华路大桥为例,采用midas总体计算和ANSYS细部分析的有限元联合分析方法对独塔混合梁斜拉桥的钢—UHPC结合段的受力开展了研究。首先采用midas civil分析软件建立全桥的总体杆系模型,以获得钢—混结合段控制截面在各种不利工况下的内力;然后在ANSYS中建立了结合段板壳—实体有限元精细化模型,将提取的内力施加于局部模型,计算得到钢—混结合段细部应力。通过受力分析发现,独塔斜拉桥采用钢—混结合段后,充分发挥了混凝土抗压和钢结构抗拉的材料优点,构造受力合理,实现了材料和结构刚度的平顺过渡,是一种合理的方案选择。通过细部应力分析发现,在钢格室与承压板连接处以及顶底板折角、腹板折角与填充混凝土的接触面处,易产生较大的应力集中,应对这些部位进行局部加劲或采用平滑倒角的方式加以避免。对结合段中腹板的厚度与承压板厚度的参数敏感性分析结果表明,增加中腹板厚度可适当降低中腹板的应力,但不能降低其他钢结构的高应力水平;而增加承压板的厚度可以显著降低钢结构的高应力水平。  相似文献   

8.
为研究宽箱梁钢拱桥采用常规的二维或空间杆系有限元分析方法能否真实反映结构的受力特性,以南昌市艾溪湖大桥主桥(主跨108 m,全钢结构的外倾式拱肋系杆拱桥,钢梁最大宽度73 m)为背景,采用通用有限元软件ANSYS分别建立该桥杆系有限元模型与杆系板壳混合有限元模型,对比计算分析了不同荷载工况下拱肋以及主梁的受力情况.分析结果表明,2种模型均可用于拱肋的受力计算,但采用杆系模型时不能真实反映主梁的受力特点,需采用混合模型用于主梁受力分析.  相似文献   

9.
该文以东水门长江大桥为研究背景,首先介绍了钢桁架公轨双层斜拉桥的构造特性及标准节段的施工流程和相关技术要求。然后通过建立大型三维有限元模型对运营期的桥梁静力受力状态进行仿真模拟;为真实反映桥面系各构件的相互作用关系及局部荷载分布特征,建模时对上下弦杆、桥面板、横梁及加劲肋等构件进行精细化模拟。基于数值计算结果,重点分析了标准节段的承载特性以及桥面板、横梁、加劲肋等构件的应力和内力变化规律。结果表明:横梁在桥面系的受力和变形控制中发挥了至关重要的作用,是桥面荷载传递的主要构件;而桥面板和加劲肋对结构承载的贡献相对较小。  相似文献   

10.
大跨径斜拉桥设纵隔板对钢桥面铺装力学特性的影响   总被引:4,自引:0,他引:4  
利用通用有限元ANSYS软件,计算分析大跨径斜拉桥设纵隔板对钢桥面铺装力学特性的影响,并分析纵隔板两侧加劲肋刚度对钢桥面铺装受力的敏感性.结果表明,铺装层表面最大横向拉应力/应变最不利荷位是荷载对称施加于一加劲肋正上方且紧靠纵隔板一侧,该荷位作用下计算加劲肋的挠跨比控制在要求的1/800~1/1 700范围内;铺装层表面最大纵向拉应力/应变和最大竖向位移最不利荷位均是荷载施加于相邻两加劲肋中心之间的正上方且跨过纵隔板.同时指出纵隔板上方铺装层表面出现更明显的应力集中,它可以通过改变纵隔板两侧加劲肋刚度得以降低,而且纵隔板上方铺装层表面最大横向拉应力/应变与纵隔板两侧加劲肋刚度有很好的相关关系.  相似文献   

11.
为研究混合梁斜拉桥钢-混结合段的传力机理和受力性能,以某混合梁斜拉桥为工程背景,采用通用有限元软件Ansys建立了该桥钢-混结合段的仿真模型,分析了钢-混结合段内各构件的受力情况。结果表明:在设计荷载作用下,钢-混结合段内各构件应力水平较低,沿纵桥向变化平顺,能有效传递内力,满足结构整体受力性能的要求,且具有较大的安全储备;钢箱梁底板折角与横隔板交接处、加劲T肋尾端及靠近承压板预应力锚固区的混凝土等区域应力变化较大,且存在应力集中现象;抗剪连接件受力不均匀,距承压板最远的剪力钉所受剪力为其他部位剪力钉的2~7倍,距承压板最远的PBL剪力键所受剪力为其他部位PBL剪力键的2~6倍;PBL剪力键所受剪力比剪力钉大,但均远低于其抗剪承载力。  相似文献   

12.
为探讨桁梁-桁拱组合桥节点设计的合理性,建立上海嘉定蕴藻浜大桥梁、板单元相结合的局部计算模型,分析其关键节点受力和桥面板剪力滞效应。分析结果表明:局部模型是正确的;桁架节点板在支座垫板位置边缘有较大的应力集中,建议用加劲加强或改善构造设计;节点板在下弦杆与系梁倒角处出现较大的应力集中,可适当增大倒角的半径;桥面板边跨侧受压、主跨侧受拉,横向应力分布基本相同,纵向应力在横向呈现类似M形的分布,应力在系梁部分最大、向两边逐渐减小,小纵梁和加劲肋对应力变化影响较小。  相似文献   

13.
为研究钢锚箱式锚固结构的受力机理,以某中承式拱桥系梁拉索钢锚箱为研究对象,选取包含钢锚箱在内的系梁节段,以支撑板、加劲板长度、承压板板厚为参数,运用有限元软件ANSYS12. 0建立参数化的"实-壳"混合弹塑性有限元模型,并对其进行仿真参数分析。仿真结果表明:在设计荷载、承载力极限荷载工况下,钢锚箱各板件分配荷载比例无明显区别;支撑板、加劲板长度、承压板厚度均能影响结构的破坏模态。  相似文献   

14.
为研究带挑梁钢箱组合梁的合理构造形式,对两种常用的带挑梁钢箱组合梁腹板加劲形式的构造特点、传力路径、受力特性、施工要点等进行了理论分析与对比,并采用板单元有限元模型进行了对比分析。分析表明,对应于挑梁底板设置内撑加劲肋比设置腹板通长纵肋的传力路径更清晰、腹板面外变形更小、挑梁应力峰值也更小,是更合理的带挑梁钢箱组合梁的腹板加劲构造形式。  相似文献   

15.
为了详细阐述简支组合梁桥的设计流程,以某座跨径为40 m的简支组合梁桥为例,利用Midas有限元分析软件对该桥的施工过程及使用过程进行模拟.主要对比分析模型建立精度及施工方案对结构受力的影响,以及材料优化对结构轻型化设计的益处.结果表明:钢梁底板加劲肋对底板受力情况有较大的影响.在建立模型时,建议对加劲肋进行模拟.设置临时支撑能有效改善钢梁的受力,但同时会大幅度地增大混凝土桥面板的压应力.合适的施工方案和优化材料的结合能使结构设计轻型化,有效地减少工程材料用量.  相似文献   

16.
为了解混合梁悬索桥钢混结合段受力性能,为该类型桥梁的设计和科研提供参考,以某混合梁悬索桥工程为背景,采用有限元软件对该桥钢混结合段进行施工过程模拟,分析该部位在各施工阶段下的应力分布特点及变化规律.同时,建立边主梁结合段有限元模型,研究钢混结合段中剪力钉受力状态、结合段各部位传力途径和比例等.分析结果表明:该桥结合段钢结构、混凝土应力基本满足规范要求,仅在混凝土局部较小区域位置拉应力偏大,需要在构造上采取相应措施;结合段剪力钉最大受力为52.3 kN,小于规范限值,说明剪力钉静力承载力不控制结合段设计.  相似文献   

17.
为避免或缓解拱肋钢管与混凝土界面的脱粘或脱空,对钢管混凝土拱桥中的拱肋和节点受力性能的不利影响,提出在钢管混凝土拱肋中设置PBL纵肋,形成一种新型的PBL加劲型钢管混凝土拱桥形式。结合青海省西宁市采用"PBL加劲型矩形钢管混凝土桁架拱桥"结构形式的某在建桥梁,首先从下层拱肋、桁架-拱组合体系两个层面对该桥进行受力分析;根据主桥结构的受力特点,采用有限元数值模拟方法,分别建立腹杆受力较大的节点的局部精细化有限元模型、典型拱肋节段模型,研究节点的局部受力情况、太阳辐射下拱肋钢管与混凝土的界面受力性能。研究表明:梁肋在靠近拱顶附近时的轴向压力最大,此后其轴力迅速变小;拱顶处的拱肋轴向压力最小,此后迅速增大,并在拱脚处达到最大;腹杆作为梁肋与拱肋之间的传力构件,将整个结构连接成整体,使整个桁架结构共同受力;靠近拱顶、且腹杆受力较大的节点受力较为复杂。设置PBL纵肋能明显减小节点的传力长度、缓解节点的应力集中和变形程度,从而改善节点的受力性能;能明显缓解太阳辐射作用下钢管与混凝土的脱粘和脱空,从而保证拱肋的运营安全;该桥不仅满足使用功能的要求,与环境协调、造型美观,且受力较为合理,整体应力水平不高,满足安全的要求。  相似文献   

18.
通过对国内外正交异性钢桥面板的研究发现,其破坏的主要形式是钢桥面板的疲劳破坏,针对钢桥面板在使用过程中发生疲劳破坏的原因,以东莞水道桥为依托,选取了纵向加劲肋类型、横隔板挖孔形式及纵肋内小隔板焊接形式三个主要参数,研究正交异性钢桥面板在不同参数下的疲劳应力及应力集中系数变化情况。研究结果表明:与开口加劲肋相比,闭口加劲肋的加劲效率更高,U形肋的应力集中系数显著低于其他三种截面形式纵肋;在车辆荷载作用下,当横隔板采用梯形开孔形式时,其与纵肋、顶板间的焊缝处应力水平比较均衡;通过设置小横隔对桥面板刚度进行局部增强,能有效降低顶板与纵肋、顶板与横隔板、纵肋与横隔板间三处焊缝的应力水平和应力集中程度。  相似文献   

19.
为了解组合式锚拉板索梁锚固构造在混凝土斜拉桥中的受力特性,以某(34+81+115)m跨铁路斜拉桥为背景进行研究。该构造由钢拉板、预埋混凝土梁内的工字型钢构成,工字型钢与混凝土采用PBL键及剪力钉连接。采用有限元软件,建立锚拉板及索梁锚固区有限元数值模型,分析了钢拉板、锚固区混凝土、预埋工字型钢的受力状态,并通过模型试验验证了关键焊缝的抗疲劳性能。结果表明:钢锚拉板与锚拉筒连接焊缝圆弧过渡处附近有较明显的应力集中现象;锚固段混凝土顶部(第一排PBL键以上至梁顶范围)主拉应力较大,超出混凝土的抗拉强度;各主要焊缝疲劳试验均没有发现宏观裂纹,满足抗疲劳设计要求;该构造为混凝土斜拉桥索梁锚固提供了一种解决方案。  相似文献   

20.
该文针对钢管混凝土拱桥拱肋灌注中爆管事故频发问题,采用平面简化计算方法与空间有限元方法对桁架式钢管混凝土系杆拱桥灌注钢管及缀板腔内混凝土时拱肋的受力特性进行了分析。分析表明:桁架式拱肋在灌注钢管内混凝土时一般可满足要求,而在缀板腔内混凝土灌注过程中,钢管与缀板交界处以及缀板横向中心位置始终存在较大的应力,而泵送压力太小则又将施工工序复杂化,建议对缀板腔进行型钢加劲。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号