首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
某SUV工装样车3 GWOT(3 Gear Wide Open Throttle,3挡全油门加速)工况下发动机转速在3 450 r/min左右时驾驶员内耳位置存在明显轰鸣噪声,试验测试结果显示发动机加速噪声声压级曲线在该频率下存在峰值,且2阶噪声起主导作用。通过NTF(NoiseTransferFunction,噪声传递函数)仿真分析发现了轰鸣噪声传递的主要路径,通过动刚度分析和模态分析确定动力总成激励激起副车架模态是轰鸣问题产生的主要原因。对副车架进行改进,提高了副车架1阶弯曲模态频率,同时提高扭力臂悬置安装点的动刚度水平,改善了噪声传递函数并解决加速轰鸣问题。改进后试验测试结果显示发动机加速噪声声压级曲线峰值在该频率下降低,主观感受加速轰鸣噪声基本消失,验证了仿真分析的准确性和改进方案的有效性。  相似文献   

2.
文章以某纵置四驱SUV低速加速1400rpm和1700rpm车内存在明显轰鸣声为例,通过传动系统转速波动测试、CAE模态和传递函数分析结合整车模态匹配表快速确定了1400rpm轰鸣声是由后副车架45Hz刚体模态被激发出来与车内声腔模态耦合形成,1700rpm轰鸣是发动机2阶激励将顶棚前横梁二阶模态53Hz激发出来与车内49Hz声腔模态耦合产生。通过在后副车架增加45Hz动力吸振器和前顶棚横梁加3.0kg质量块使1400rpm、1700轰鸣分别降低4.2dB(A)、6.8dB(A)。同时探讨了通过对TCU换挡策略进行标定能快速有效降低轰鸣6.2dB(A),为解决整车低转速轰鸣提供了一种新颖的指导思路。  相似文献   

3.
某纯电动汽车在粗糙路面匀速60km/h行驶过程中,车内后排乘客能感受到明显轰鸣声。通过整车声腔模态、TPA传递路径分析等试验分析,确认问题产生机理:路面激励-后副车架本体模态放大-车内声腔模态耦合。通过降低后副车架衬套硬度,整车轰鸣声得到明显改善,同时对优化后衬套进行耐久分析,最终确认为工程实施方案。  相似文献   

4.
针对整车加速工况下的轰鸣噪声,首先采用阶次分析方法确定了轰鸣噪声对应的发动机阶次和转速区间,然后针对副车架结构进行模态试验,基于模态分析结果提出副车架结构改进方案并进行验证,结果表明改进副车架后车内加速轰鸣噪声得以优化。这对于整车轰鸣噪声问题的优化解决具有一定参考价值。  相似文献   

5.
轰鸣声是后驱车传动系统典型的NVH问题之一,它是发动机阶次激励产生的。当阶次激励与传动系、车身或空腔模态耦合时,就会在车内明显感知到。某MPV在高速滑行时车内存在严重轰鸣声,通过振动噪声和模态测试分析,发现传动系固有频率与问题频段重合,在发动机6阶和后桥主减齿轮阶次激励下,发生共振。通过力声传函测试,确定主要传递路径。从源和路径上提出优化方案,方案验证有效。  相似文献   

6.
某SUV量产车型售后客户抱怨发动机转速3000~4000rpm时车内加速噪声大,通过主观评价及客观数据分析发现该转速段内存在轰鸣声。借助模态试验和仿真相结合的方法分析了轰鸣声的形成原因,识别了轰鸣声的主要传递路径,确认了副车架模态对车内轰鸣声的影响。通过采用在前挡板和纵梁连接处增加支架的优化方案,有效解决客户抱怨的车内加速噪声大的问题。  相似文献   

7.
针对某款车在加速工况下,发动机转速在3 600 r/min左右车内出现轰鸣噪声,文章利用试验和CAE相结合的方法,明确进气系统存在120 Hz声模态和空滤支架安装点动刚度不足是产生车内轰鸣声的要因。通过提升空滤支架安装点动刚度,出气管设计120 Hz谐振腔,降低了问题转速的噪声峰值,主观评价轰鸣声改善明显。另外,针对出气管隔振波纹的隔振方向对车内噪声的影响进行了研究,试验验证隔振波纹解耦对车内噪声峰值有2 dB(A)的优化效果,此优化方向为工程化控制和解决进气系统噪声问题提供了有效可行的新思路。  相似文献   

8.
针对某SUV车型加速工况车内轰鸣的问题,首先通过车内噪声和传递路径测试分析,识别出传动系统为问题产生的关键。对传动系统进行弯曲模态和扭振测试,确定扭振为车内轰鸣问题的原因。然后建立传动系统一维模型,进行仿真分析,识别传动系统不同部件参数对扭振的贡献。通过主减速器增加质量环,有效消除车内轰鸣的问题。  相似文献   

9.
动力传动系统弯振与扭振是引起诸多后驱汽车车内轰鸣声的共性问题。某前置后驱柴油机汽车在全油门加速工况时,动力传动系统的多个耦合弯振频率及其3阶扭振造成车内多个转速下的噪声峰值。通过进行动力传动系统扭振计算分析与弯扭振试验研究,采用减小动力传动系统激励源与改变该系统弯扭刚度的方法,解决了由于动力传动系统弯扭振动特性引发的NVH问题。  相似文献   

10.
某微型客车在加速工况下,发动机转速为1100 r/min附近时车内存在轰鸣噪声,严重影响汽车乘坐舒适性.通过道路试验,对车内噪声和传动系统关键零部件进行实车测试.通过以信号处理为基础的噪声源识别方法分析,确定该车内轰鸣噪声系由传动轴中间支撑振动激励传递至车身,并激励乘坐室顶棚结构振动和空腔声学模态耦合所致.提出采用更改传动轴中间支撑衬套刚硬度和在车顶粘贴阻尼贴片的减振降噪措施,取得最大降噪5 dB(A)的效果.  相似文献   

11.
本文对某前置后驱微型客车在发动机转速为1 700r/min附近时后排座的轰鸣噪声开展研究。首先基于传递路径分析,对车内噪声和传动系统关键零部件振动特性进行实车测试。根据测试结果对轰鸣噪声源进行识别,确定该车内轰鸣噪声系由后悬架横向稳定杆频率为56Hz的2阶弯曲模态与发动机激励耦合引起。接着,以横向稳定杆模态频率与发动机激励频率隔离为目标,采用有限元法对该零件结构进行优化。结果表明,改用O形截面结构可将横向稳定杆的2阶弯曲模态频率提高至70Hz。最后经实际制造改进的横向稳定杆装车试验,证实发动机在1 700r/min转速附近后排座的轰鸣噪声得到有效控制,并满足主观评价要求。  相似文献   

12.
四驱传动系统在提升车辆超稳和爬坡性能的同时,带来了严重的车内轰鸣声问题。文章对四驱传动系统导致的车内轰鸣声机理及其控制进行了系统性阐述和讨论,并利用客观测试分析了某款开发中四驱车型产生车内轰鸣声的原因:传动系扭转振动过大和传动轴弯曲模态频率过低。通过调试扭转减振器和传动轴内置动力吸振器方案,显著降低了车内2阶和4阶噪声8-20 dB(A),主观评估轰鸣声改善明显。  相似文献   

13.
以某一商用车为研究对象,利用试验方法深入分析了车内噪声特性。根据噪声频率、激励源频率、车身钣金模态频率以及车内声腔模态频率的对比分析结果,确认了车内轰鸣问题的产生原因。通过增强车顶钣金刚度与车身密封性能,明显改善了车内轰鸣问题。对比试验结果表明,在110 km/h车速工况改进状态下,车内噪声降低3 d B,语言清晰度提高11%。  相似文献   

14.
车辆在粗糙路面上行驶时,底盘零件的弹性模态与轮胎模态或者车身声腔模态耦合,极易产生100~300 Hz的低频轰鸣,从而降低整车的NVH品质。文章针对这一问题,分析了路面激励到车内噪声的所有传递路径,利用工况传递路径方法分析出对车内低频轰鸣贡献最大的关键路径;通过模态试验找到了路径上的模态原件并测试了路径与车身安装点的动刚度。根据分析结果给出改进方案,并在实车上进行了验证。结果显示,改善后的车内低频轰鸣峰值降低了约9 d B,改善效果良好。  相似文献   

15.
针对某B级轿车匀速行驶工况车内噪声大的问题,采用试验与CAE分析相结合的方法对车内噪声源进行综合识别,得到其主要噪声源及主要噪声频段,提出优化轮胎花纹结构、增加动力吸振器消除副车架共振模态、优化车身结构和增加阻尼垫的改进方案。改进前、后分别进行了整车NVH试验,试验结果显示,改进后匀速行驶工况车内噪声降低3.2 dB(A)。  相似文献   

16.
本文针对某前置后驱轿车高速行驶时车内后排出现的轰鸣声,从激励源、传递路径和响应三个方面进行了影响因素分析,论证了变速箱标定、排气消音结构、传动系动不平衡、后副车架衬套隔振和车身局部结构对轰鸣声的影响,制定了有效可行的解决方案,使轰鸣声降低8dB(A),主观评价轰鸣声消失。  相似文献   

17.
NVH性能不仅是影响车辆驾乘舒适感的重要因素,而且是评价整车品质的重要指标之一。本文介绍了某SUV车型在四驱小油门加速工况下车内轰鸣问题的解决思路和优化方案,通过试验测试发现该车轰鸣是由发动机2阶激励经过悬置传递,引起风挡下横梁模态共振,进而放大车内2阶噪声。通过优化悬置刚度及横梁模态,从路径和响应上控制发动机激励、车内传递及放大,从而有效降低或消除车内轰鸣。  相似文献   

18.
NVH性能是影响车辆舒适性的重要因素之一,某SUV车型加速过程中在发动机转速为2600 r/min时存在明显轰鸣声,严重影响车内乘员舒适性。通过道路上车内噪声的测试与分析、模态分析、CAE分析等方法对轰鸣声产生的原因进行了研究,确定该轰鸣声是由车身风挡横梁下板的局部结构振动和空腔声学模态耦合引起的。通过提高车身风挡横梁下板局部刚度改变结构振动的固有频率,避免了风挡横梁下板振动与声腔模态耦合。对风挡横梁下板进行局部改进后,道路试验结果表明车内轰鸣声得到明显改善,噪声降低5d B(A)左右。  相似文献   

19.
以某前置后驱车为研究对象,针对客户抱怨的车内轰鸣问题进行了噪音和振动检测,解析数据后发现,传动系阶次噪音对车内轰鸣声贡献最大。文章对传动系阶次激励的来源、传递路径及车体响应进行了机理性分析,并根据轰鸣产生路径依次列出潜在解决措施并试制样件进行验证。结果表明,管控关键因子(隔振率、传动系模态)、抑制噪音因子(装配间隙产生的偏心量)对解决由传动系剩余动不平衡引起的车内轰鸣问题十分有效。  相似文献   

20.
通过整车状态下副车架约束模态和油门全开道路行驶工况下的噪声振动测试和分析,确定了车内"嗡嗡"声的根源(发动机二阶激励引起副车架共振传递至车内)及其频段。在此基础上,采用在前副车架的悬置安装点附近安装一个动力吸振器的方案,在此之前为了确定吸振器的质量,讨论了等效质量的两种理论计算方法及阻尼比的设定,试验表明,吸振器的应用有效地衰减了副车架在该频段的振动,从而减小了对副车架垂向弯曲模态的激励,基本上消除了车内的噪声峰值,显著改善了加速工况下的车内噪声。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号