首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对剪压破坏时配有斜筋的钢筋混凝土梁斜截面受剪承载力进行了研究。根据钢筋混凝土受弯构件的剪切破坏机理,考虑腹筋和受压区混凝土共同承担剪力,基于极限平衡理论和对Rankine破坏准则进行简化后的混凝土强度破坏准则,建立配斜筋钢筋混凝土梁斜截面抗剪的平衡方程,提出极限承载力的计算公式。通过对2片配斜筋钢筋混凝土梁的试验数据进行对比,结果表明理论计算值与试验值较为吻合。  相似文献   

2.
为研究超高性能混凝土(Ultra-high Performance Concrete,UHPC)薄腹梁受剪性能和抗剪承载力计算方法,设计制作11片模型梁开展荷载试验,试验参数包括纤维率、纤维种类、配箍率、剪跨比和混凝土强度。分析了试验梁破坏形态、裂缝开展过程和主要因素对梁体受力响应影响规律。试验结果表明:UHPC梁的受力过程分为弯曲开裂前弹性阶段、"桥联作用"失效前和"桥联作用"失效后3个阶段。UHPC梁剪切破坏具备一定延性且有明显征兆,为半延性-半脆性破坏。由于纤维"桥联作用",UHPC梁剪切开裂后呈多条剪切裂缝同时开展现象,破坏过程伴随着纤维持续从基体里拔出的"滋滋声"。此外,配置适量箍筋可使梁体破坏模式从脆性剪切破坏向更具延性的弯曲破坏转变。基于Rankine破坏准则,推导出剪压区混凝土简化强度准则;考虑T形截面翼缘的影响,提出腹板抗剪有效宽度计算方法;通过极限平衡法,得到考虑翼缘影响的混凝土抗剪贡献计算式。基于分项叠加思想,建立考虑混凝土、箍筋和纤维抗剪贡献的UHPC梁抗剪承载力理论计算式。该公式形式简单,物理意义明确,可以考虑纤维率、剪跨比和梁体尺寸等影响因素。用试验结果对提出的计算式进行验证,得到抗剪承载力理论计算值和试验值比值均值为0.94,标准差为0.17,计算结果表明提出的计算式可以较好地预测UHPC梁的抗剪承载力。  相似文献   

3.
配筋超高性能混凝土(Ultra-high Performance Concrete, UHPC)梁在弯剪扭组合荷载作用(复合受扭)下的抗扭性能研究较为匮乏。为此,开展了8根配筋UHPC矩形梁的复合受扭试验,获得了各试件损伤破坏模式、扭矩-扭率曲线、扭矩-应变曲线及扭矩-裂缝宽度曲线,分析了配筋UHPC矩形梁复合受扭破坏机理,探讨了扭剪比、纵向配筋率对抗扭承载性能和延性的影响。试验结果表明:试件破坏形态为纯扭破坏和非纯扭(扭转、剪扭、弯扭)破坏;相比于纯扭试件,非纯扭试件表面未形成空间螺旋形裂缝,同时其正立面裂缝比背立面数量更多且更宽,非纯扭试件开裂扭矩降低46%~73%,抗扭承载力降低1%~38%,扭转延性系数提高38%~169%。随扭剪比从1增加到3,非纯扭试件抗扭承载力提高1%~21%,扭转延性系数提高24%~88%;随着纵向配筋率从0.78%增加到4.90%,试件抗扭承载力提高12%~27%,非纯扭试件扭转延性系数提高35%~88%,但纯扭试件扭转延性系数下降了31%。配筋UHPC复合受扭梁弯扭相关性符合“三折线”模型,基于弯扭“三折线”模型提出的复合受扭梁抗扭承载力公式计算值与...  相似文献   

4.
磷酸镁水泥混凝土可应用于桥梁抢建工程中的受弯构件,为研究钢纤维磷酸镁水泥混凝土梁的受弯性能,对5片不同钢纤维掺量(0%、0.5%、1.0%、1.5%和2.0%)的磷酸镁水泥混凝土梁进行了四点弯曲加载试验,分析了钢纤维掺量对磷酸镁水泥混凝土梁破坏形态、裂缝分布、受弯承载力以及延性等受弯性能的影响。试验结果表明:试验梁的破坏模式均为典型的弯曲破坏;在同等荷载作用下,掺有钢纤维的试验梁裂缝数量更多,但裂缝宽度更小且分布更加密集,改善了梁体开裂状况;随着钢纤维掺量的增加,试验梁的开裂荷载、屈服荷载和峰值荷载以及延性系数均得到提高,其中延性系数的提高尤为显著。基于ABAQUS有限元分析,与试验结果进行对比,并以钢纤维掺量和纵筋配筋率为参数进行了有限元参数化分析,结果表明:纵筋配筋率增加可以显著提高磷酸镁水泥混凝土梁受弯承载力,但会降低梁的延性,而提高钢纤维掺量则能显著改善梁的延性。最后,通过探究钢纤维在混凝土中的作用机理,提出了钢纤维在载荷方向上贡献的抗拉强度,建立了钢纤维磷酸镁水泥混凝土梁的受弯承载力计算公式,且计算结果与试验结果吻合良好。  相似文献   

5.
为研究锈蚀钢筋混凝土梁极限承载力和破坏形态,建立锈蚀钢筋混凝土梁极限承载力计算公式,通过34根构件实测值验证计算公式准确性,开展14根锈蚀钢筋混凝土梁极限承载力试验,研究锈蚀率和剪跨比对锈蚀钢筋混凝土梁极限承载力的影响,结果表明:锈蚀钢筋混凝土梁极限承载力随剪跨比增加而减小,锈蚀率小于5%,锈蚀钢筋混凝土梁破坏状态与未锈蚀钢筋混凝土梁都呈现出剪切破坏状态,锈蚀率大于5%,锈蚀钢筋混凝土梁破坏形态由剪切破坏转化为弯曲破坏;锈蚀率10%是极限承载力变化临界点,每增加1%,小于临界点和大于临界点时极限承载力分别降低1.4%和5.6%。锈蚀钢筋混凝土梁极限承载力计算值与试验值平均比值为1.05,计算公式具有较高精度。  相似文献   

6.
预制小箱梁采用整体抽拉式钢内模形成的近支座处接缝处于剪力最不利位置,界面上纵筋配筋率低、无预应力钢束穿过、锚固端在此形成刚性的剪切键。为揭示此种接缝构造的抗剪承载机制,设计制作9组18个Z形直剪试件进行静载试验,通过分析各试件的破坏形态、荷载-位移曲线及抗剪承载力,研究新老混凝土结合面单独加入界面钢筋、刚性剪切键以及将界面钢筋和刚性剪切键组合在一起(简称为组合试件)对结合面剪切性能的影响。研究结果表明:界面钢筋能有效提高结合面的抗剪承载力,界面钢筋试件的抗剪承载力为基本试件的1.74~2.67倍,构件抗剪承载力与界面配筋率有较好的线性关系;界面钢筋的承载机理符合摩擦抗剪理论,试件沿平行结合面约40°方向错动;刚性剪切键试件的荷载-位移曲线经历了先下降后上升的过程,刚性剪切键在结合面处起销栓作用,破坏模式为销栓抗剪引起的混凝土破坏;组合试件的抗剪承载力为基本试件的3.23~3.48倍,其中界面钢筋提供的抗剪能力占构件平均抗剪承载力的48.6%~52.2%,刚性剪切键提供的抗剪能力占构件平均抗剪承载力的20.2%~24.6%;将刚性剪切键受剪导致混凝土破坏的抗剪承载力表达为基材混凝土强度、...  相似文献   

7.
为了解决FRP筋弹性模量低、剪切强度低和延性差的问题,设计和制备了多种规格的FRP-钢筋复合筋,并通过拉伸和剪切试验研究了含钢率和直径对其拉伸性能和剪切性能的影响。然后根据FRP-钢筋复合筋的性能特点及其增强混凝土构件的性能要求,提出了此类构件与相同钢筋混凝土构件的配筋总刚度相等的等效刚度设计法,并试验对比和分析了等承载力与等效刚度2种不同等效设计法设计的FRP-钢筋复合筋增强混凝土梁的受弯性能。结果表明:与FRP筋相比,FRP-钢筋复合筋的弹性模量、延性和剪切性能都明显提高。FRP-钢筋复合筋的弹性模量可达到FRP筋弹性模量的3倍以上,这为等效刚度设计法的实现提供了良好基础。等效刚度设计的FRP-钢筋复合筋增强混凝土梁具有和钢筋混凝土梁接近的屈服前受力性能(挠度和最大裂缝宽度)和良好的延性,并且可使其极限承载力提高30%。即等效刚度设计的此类构件不仅可满足安全性和适用性要求,而且具有更大的承载力储备和更好的耐久性。由于等效刚度设计法可参考现有的钢筋混凝土结构设计规范进行设计,其有望为此类构件和结构设计与工程应用提供简便适用的计算分析和设计方法。  相似文献   

8.
为了研究钢筋加强工程水泥基复合材料(ECC)梁中的箍筋抗剪加强效应,针对发生剪切破坏的普通钢筋混凝土(RC)构件,考虑箍筋率的影响,分别进行RC与ECC梁的四点加载试验研究。首先开展ECC材料试验,采用直接拉伸的加载方式,对聚丙烯纤维工程水泥基复合材料(PP-ECC)的拉伸力学性能进行试验研究。在材料试验结果的基础上,通过考虑箍筋效应,分别设计5根不同箍筋率的钢筋增强PP-ECC梁和2根普通钢筋混凝土梁试件,对7根梁进行四点加载试验,并在加载过程中对5根PP-ECC梁的斜裂缝进行观测,分析箍筋率对ECC梁斜裂缝开展行为的影响。通过修正桁架模型,分析箍筋率对ECC梁抗剪承载力的影响。试验结果表明:PP-ECC具有拟应变硬化和微裂缝的多缝开裂特征,其屈服拉伸强度和拉伸极限强度分别不小于2,3MPa,极限拉应变大于2.5%;PP-ECC梁有较好的剪切延性,随着箍筋率的增长,PP-ECC梁的抗剪承载力也逐渐加大;在相同箍筋率下PP-ECC梁的抗剪承载力大于RC梁,而无箍筋PP-ECC梁的抗剪承载力2倍于无箍筋RC梁;由于箍筋限制了R/ECC梁斜裂缝的开展,加剧了斜裂缝的剪切滑移,从而削弱了斜裂缝间的纤维桥接作用,导致PP-ECC承担的剪力随着箍筋率的增大而减小;现有规范未考虑斜裂缝的剪切滑移对PP-ECC抗剪承载力的削弱作用,使得计算剪切承载力过大而导致偏危险。  相似文献   

9.
基于混凝土受压、受剪、受弯构件类型的承载力计算方法和原则,提出根据剥落程度的混凝土构件承载力评估方法。其主要思路是根据剥落程度对不同受力类型构件承载力计算参数的影响分析,提出承载力计算参数的取值方法和原则,从而可以通过采集构件实际损伤情况,确定验算参数评估值,再按不同受力类型构件承载力计算方法验算出现剥落损伤后的构件承载力。  相似文献   

10.
空心板梁桥在公路桥梁中应用广泛,但随着使用年限增加,板梁铰缝及其附近铺装层发生破坏,严重时导致单板受力。采用加厚重做混凝土铺装层的方法对破损铰缝进行加固,制作了3组板梁加固节点的足尺模型,开展了不同受力模式下的静力加载试验,得到了加固后铰缝部位的破坏模式和极限承载力。结果表明:铰缝与板梁交界面率先发生开裂之后,试件的最终破坏均表现为混凝土铺装加固层的弯曲或剪切破坏,且不同破坏模式下的铰缝节点均表现出较好的延性。与基于全桥实体有限元分析得到的铰缝截面最不利内力设计值相比,加固后铰缝节点的抗弯和抗剪承载力分别高出3倍和1倍,该加固方法可在工程实践中推广应用。  相似文献   

11.
为改善波形钢腹板组合梁负弯矩区受力性能,避免波形钢腹板剪切屈曲以及受压翼缘局部屈曲,提出波形钢腹板内衬混凝土形成组合构造的措施。通过设计具有不同弯、剪比参数的2个试件,开展波形钢腹板内衬混凝土组合梁模型试验,研究其承受弯矩与剪力共同作用下的力学性能,明确不同弯、剪比对极限承载能力以及失效模式的影响,建立弯、剪共同作用的相关方程。试验结果表明:试件的破坏模式为明显的弯、剪耦合破坏,内衬混凝土出现弯曲、剪切2类主裂缝;弯剪比对试件未开裂截面抗剪刚度影响较小,但对初始开裂后试件抗剪刚度影响较大;弯剪比增大,试件开裂荷载减小,结构的延性增加;在弯、剪共同作用下,未开裂截面应变基本满足平截面假定,但受拉区混凝土开裂后,相应区域波形钢腹板由于"折叠效应"应变较小,平板段几乎为0,斜板段由于混凝土的挤压作用应变不为0。最终依据模型试验与数值模拟结果,建立弯、剪共同作用下波形钢腹板内衬混凝土组合梁承载力评价准则,为今后的设计提供参考。  相似文献   

12.
为了提高胶合木-钢夹板螺栓连接构件抗剪承载力的计算精度,在考虑构件厚径比的影响下,对单螺栓连接的胶合木-钢夹板连接构件进行了抗剪性能试验。采用推出试验的方法,设计了5大组,3小组共45个推出试件,探究其从加载到破坏整个过程中的剪切破坏情况。基于销槽承压理想弹塑性模型、螺栓连接的承载力理论与Johansen的"屈服理论",提出了3种螺栓连接在抗剪承载力下出现的剪切破坏模式,并推导出胶合木-钢夹板螺栓连接构件的抗剪承载力计算公式。试验结果表明:胶合木-钢夹板单螺栓连接中,随着厚径比的增大,螺栓连接破坏模式会逐渐由"单铰"破坏模式变成"双铰"破坏模式。通过推导式计算的胶合木-钢夹板螺栓连接件抗剪承载力理论值和试验值差值最大差值仅为8. 72%,计算结果与试验结果吻合良好。  相似文献   

13.
侵蚀环境下高性能钢结构普遍存在局部锈蚀病害,这将削弱结构的整体承载能力。为了研究局部锈蚀对钢结构承载力的影响程度,设计制作了7片H形Q550E高性能钢梁,研究不同局部锈蚀对高性能钢梁抗弯性能的影响。首先对其中6片试验梁的弯剪段和纯弯段开展了不同锈蚀率的加速锈蚀,另1片为未锈蚀对比梁。接着,对试验梁开展四点弯曲分级加载试验,采集并对比分析了试验梁关键截面的应变和挠度数据。结果表明:锈蚀导致试验梁的承载力、屈服挠度、极限挠度和延性降低,相同锈蚀率下纯弯段性能降低程度大于弯剪段;右半截面承载力比下半截面降低程度更大;所有试验梁均为受压翼缘屈曲失稳破坏;SCR梁屈曲发生在弯剪段,其他试验梁屈曲位置位于纯弯段;弹性阶段腹板应变符合平截面假定,试验梁受拉翼缘一般先于受压翼缘屈服,因此随着荷载的增加,会出现截面中性轴上移现象;整体锈蚀比纯弯段下半截面锈蚀时的剩余承载力低,主要因为整体锈蚀时受压翼缘存在锈蚀削弱,导致试验梁屈曲提前,承载力降低;局部锈蚀的不均匀性会产生翼缘应力集中,导致PCR试验梁比整体锈蚀梁承载力低;与普通钢梁相比,锈蚀对于高性能钢梁承载力退化影响更大;对于顶板和底板锈蚀,梁的剩余承载力与其锈蚀程度为线性关系。  相似文献   

14.
为建立基于可靠性的在役T形截面简支梁桥抗剪承载力临界寿命曲线,并提出相应的受剪承载力剩余寿命实用预测方法,以设计目标可靠指标降低0.5为受弯构件抗剪承载能力最低可靠指标。在引入抗力简单随机过程模型的基础上,通过计算不同评估基准期与最低可靠指标对应的构件抗力相对折减系数限值,建立了基于抗力折减系数限值的受弯构件抗剪承载能力临界寿命曲线和预测方法。最后,以某20 m简支T形梁桥为例进行抗剪承载力寿命预测,计算结果表明,本文提出的抗剪承载力寿命预测方法简单实用,与基于可靠度的在役桥梁承载能力剩余寿命预测方法是等效的,避免了寿命预测中复杂的可靠指标计算过程,可用于在役桥梁受弯构件抗剪承载力寿命预测。  相似文献   

15.
预应力碳纤维加固受弯构件的受力性能分析   总被引:1,自引:0,他引:1  
该文在已有成果与试验研究基础上,基于平截面假定和变形协调对预应力碳纤维加固结构的截面性能进行了参数分析,考察了碳纤维面积与初始应变对结构承载力、延性等性能的影响,讨论了碳纤维加固量的新定义并分析绘制了其与受弯结构性能的关系曲线,在此基础上研究了加固结构承载力与延性的相关性.分析结果表明:加固构件的承载力与碳纤维面积及初始应变两个参数均呈正相关;构件延性、截面极限曲率与承载力的相关关系受构件破坏形式的影响.#  相似文献   

16.
郑开启  刘钊 《中国公路学报》2020,33(1):79-86,110
由于钢筋混凝土(RC)梁传力机理的复杂性和剪切破坏模式的多样性,现有受剪承载力公式的计算精度随受剪参数的变化呈现出明显的波动性,限制了其适用范围。以混凝土受压区的分区破坏机制为基础,从防止纵向钢筋提前屈服的角度建议受压区高度的修正公式,由此得到同时兼容低强和高强混凝土梁的混凝土剪切贡献表达式。通过斜裂缝倾角的转动规律分析混凝土与箍筋协同工作机制发挥的不同阶段,并据此建议箍筋项的剪切贡献计算原则。建立基于受压区分区的有腹筋RC梁受剪承载力公式。该公式以分项的形式直接体现剪压区、斜拉区和箍筋三部分的剪切贡献,能够反映混凝土强度、配箍率、纵筋率、剪跨比以及尺寸效应等主要受剪参数的影响规律。最后,基于剪切试验数据库对所提公式和当前主流公式进行验证,并对各公式的预测精度和参数敏感性进行对比评价。研究结果表明:所提出的受压区分区破坏机制能够较好地反映剪切破坏模式随剪跨比变化的演变规律;建议的受剪承载力公式具有较高的精确性和稳定性,对受剪参数的大范围变化不敏感,且对高强、大尺寸试件具有更好的适用性。  相似文献   

17.
在试验研究的基础上,建立了考虑两阶段受力影响的桥梁加固钢筋混凝土受弯构件斜截面承载力计算公式。试验结果表明,两阶段受力对箍筋和弯起钢筋的抗剪承载力影响不大,混凝土的抗剪承载力与加固前构件的斜裂缝开展情况有关,后加补强斜钢板只承受二期荷载产生的剪力,其抗剪承载力可先按弹性分析方法确定,再由试验求得的修正系数进行修正。最后给出了桥梁加固钢筋混凝土受弯构件斜截面设计的实用计算方法。  相似文献   

18.
震后桥梁通行能力预测与评估是抢险救援工作顺利进行的技术需求。桥墩是桥梁结构中重要的承载构件,地震作用下易发生损坏,由于设计参数的不同,将呈现弯曲破坏、弯剪破坏等不同破坏模式。应用理论易损性曲线法,以位移延性比来定义损伤指标,确定地震作用下桥墩弯曲破坏和弯剪破坏两种破坏模式的损伤程度判断标准,得到易损性曲线。为了分析桥梁震后通行能力,引入竖向承载能力折减系数作为损伤指标,对不同等级地震动作用下竖向承载能力的折减进行分析,并回归得到该损伤指标与地面震动加速度的函数关系。分析结果显示,相比弯曲破坏模式,桥墩在地震作用下发生弯剪破坏时达到中等破坏和完全破坏状态的概率随着地面震动加速度的增大而急剧增加。在弯剪破坏模式下,桥墩竖向剩余承载能力随着地面震动加速度的增加而下降的幅度也更大。需要在桥墩设计中合理选择参数避免弯剪破坏的发生。  相似文献   

19.
桥梁加固薄弱受弯构件承载力极限状态计算   总被引:9,自引:0,他引:9  
桥梁结构一般采用带载加固,其承载力应按两阶段受力构件计算。首先分析加筋和加混凝土两类受弯构件正截面承载力计算方法和计算公式。另外在试验研究的基础上建立考虑两阶段受力影响的桥梁加固钢筋混凝土受弯构件斜截面承载力计算公式和实用条件,分析两阶段受力对箍筋、弯起钢筋、混凝土和后加补强斜钢板抗剪承载力的影响。最后给出桥梁加固薄弱受弯构件设计实用计算方法。  相似文献   

20.
基于混合设计的高性能钢梁抗弯性能及延性试验   总被引:1,自引:0,他引:1  
基于混合设计的理念,采用中国产高性能钢HPS 485W和普通结构钢Q235,加工制造了6片混合设计工字形钢梁,在跨中单点加载,研究试验梁的抗弯承载能力、变形特征及最终的破坏形态。试验结果表明:腹板屈曲强度和试验梁侧向支撑刚度对试验梁的极限承载力、延性和失效形式有显著影响;试验梁的抗弯承载力主要由翼缘提供,但抗弯延性主要受腹板控制,承载力下降阶段受腹板屈曲强度影响显著;采用厚实截面设计的高性能钢梁可以达到全截面塑性,在有效的侧向限位下高性能钢梁具有很好的延性。试验结果与理论计算结果的对比表明,塑性弯矩理论计算结果与试验值吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号