首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
平潭海峡公铁两用大桥元洪航道桥为(132+196+532+196+132)m的钢桁混合梁斜拉桥。桥塔为H形钢筋混凝土结构,塔高200m。斜拉索采用钢锚梁+钢牛腿的锚固形式,钢锚梁单件最大重量17.6t,钢牛腿单套最大重量9.0t。钢锚梁采用整体吊装方式,单节最大吊装重量达35.6t。元洪航道桥所处位置常年大风天气,测量窗口期较少,且钢锚梁定位精度要求高。为了规避塔柱变形对钢锚梁测量定位精度的影响,钢锚梁采用内控法进行测量定位,即仪器架设到塔柱顶部施工面进行测量。通过钢锚梁加工及预拼测量、塔柱内腔控制点加密、首节钢锚梁精确定位、剩余节段钢锚梁精确定位等技术,确保了塔柱施工质量。  相似文献   

2.
平潭海峡公铁两用大桥元洪航道主桥采用(132+196+532+196+132)m钢桁梁斜拉桥。斜拉桥主梁为带副桁的板桁结合钢桁梁结构,双层桥面布置,上层为6车道高速公路,下层为双线铁路。3号桥塔与主梁间设纵向固定支座,4号桥塔与主梁间设纵向阻尼器。主桁采用N形桁式,桁高13.5m,桁宽15m,标准节间长度14m;副桁架上弦杆顶板中心线间距35.7m。有索区公路桥面及铁路桥面采用密横梁支撑正交异性整体钢桥面结构;无索区公路桥面采用密横梁支撑混凝土桥面结构。在铁路桥面系压重区设封闭钢箱,箱内采用素混凝土集中压重。桥墩处主桁架的竖杆上设置板式桥门架。梁端锚固采用锚拉板结构。该桥采用两节间大节段全焊制造及吊装,最大吊重1 250t,双悬臂架设。  相似文献   

3.
朱亭湘江大桥桥位所在河段航道等级提升,通航船舶吨位增大。为此本文首先研究提出湘江航道2 000 t级船舶对桥墩的撞击力,然后验算该桥的抗撞能力;最后针对该桥桥墩抗撞能力较差的特点,创新性的提出了"四柱墩+钢复合材料浮式圆形防撞系统"。该系统安全可靠,经济适用,有效地解决了该桥的防撞问题。  相似文献   

4.
平潭海峡公铁大桥元洪航道桥为(132+196+532+196+132)m公铁两用跨海斜拉桥,桥塔斜拉索锚固区底部3层为索导管结构,索导管采用无缝钢管制造。由于所处地理位置为台湾海峡风口处,常年大风,施工要求在8级风下能正常进行索导管定位测量,且受环境影响控制点只能布设在斜拉桥边墩墩顶及塔柱下横梁顶。在8级风下对控制点进行晃动测试分析,分析不同测回数取均值后的坐标偏差限值、内符合精度及外符合精度,得出20测回取均值可满足索导管安装精度5 mm的要求。索导管安装过程中,对其结构尺寸进行检查验收并制作定位板,采用塔柱施工面高程传递、距离投影改正等技术,确保了索导管锚固点三维坐标偏差在5 mm内,索导管锚固点与出塔点中心坐标的相对偏差在3 mm内,精度满足规范要求。  相似文献   

5.
平潭海峡公铁大桥3座通航孔斜拉桥的6个桥塔墩均采用哑铃形高桩承台,元洪航道桥N04号墩承台平面尺寸为81.0m×33.0m,厚9.0m,混凝土方量为18 104m3。为节省造价,桥塔墩承台施工均利用主体防撞箱作围堰侧板,增加底板、系梁桁架、单壁隔舱、内支撑等施工结构,组成双壁钢吊箱围堰。单个围堰总长96.8m(含防撞梁),宽37.32m,高16.6m,入水深度12.88m,最大波浪力约20 000kN。哑铃形围堰系梁区不封底,围堰分区抽水,承台分区分步施工,围堰从吊装下放、抽水至承台施工完成共有8个控制工况,采用MIDAS Civil和MIDAS FEA软件建立各施工阶段有限元模型,分析围堰、封底混凝土及已浇筑承台受力状况。计算结果表明,围堰各部分结构及已浇筑承台应力均满足规范要求,设计方案可行。  相似文献   

6.
福州马尾大桥主桥为跨径布置(71+83+123.5+240+123.5+83+71)m的连续箱梁桥,结合该桥长联、大跨、多跨等特点,对其设计关键技术进行研究。为降低梁体自重,该桥主梁采用钢—混混合梁(跨中设置96m长的钢箱梁),同时主梁根部采用空腹式箱梁结构。为降低桥梁的地震响应,14号、15号主墩布置摩擦摆球型支座,其他桥墩均布置摩擦摆柱面支座。为使主梁V撑上、下弦与整体主梁间的传力平顺自然,采用"V叉挑板式"角隅节点。为适应梁式桥的综合传力要求,钢-混结合段采用填充混凝土后承压板式构造。通过配置体外预应力实现对主跨跨中下挠的主动控制。  相似文献   

7.
基于AIS数据的桥梁防船撞结构冲击响应分析   总被引:1,自引:0,他引:1  
针对目前桥梁船撞影响参数不明确的情况,提出利用AIS数据获得桥区实际通航船舶信息,以此为基础进行桥梁抗撞分析及防船撞装置设计。以武汉长江二桥为例,基于AIS数据获得船舶的重量、偏航角、航速等信息,最终确定抗撞分析采用5000 t级船舶作为代表船型,取上行、下行最大偏航角分别为22°、8°,航速取平均航速(上行1.91 m/s、下行3.28 m/s)。在此基础上,采用显式有限元法对该桥主墩受船舶撞击的动态过程进行数值模拟,将获得的船舶撞击力与规范的计算结果进行对比,发现船舶正向撞击桥墩的碰撞力高出桥墩抗撞力的18.85%。根据桥梁防撞需求和船舶撞击力情况,设计了X形夹层结构防船撞装置,分析该装置的抗撞性,结果表明,该装置具有良好的吸能效果,可减少30%以上的船撞力,且能有效减小船舶损伤。  相似文献   

8.
虎门二桥工程坭洲水道桥采用大跨径的设计方案,对减小船舶撞击风险极为有利,但鉴于该航道航行条件复杂,应采取必要的防撞措施,保护桥梁的安全。为了确保虎门二桥工程建成后桥梁的安全运营和撞击船舶保护,对大桥遭受船舶撞击的风险、撞击作用荷载,以及桥梁防撞方案开展了研究,为桥梁基础设计提供依据。  相似文献   

9.
横潦泾大桥主桥为主跨125m的变截面预应力混凝土连续箱梁桥,由于苏申外港线航道整治,为满足Ⅲ级航道通航尺度的要求,该桥采用整体顶升技术将桥梁整体抬高约1.58m。为保证顶升期间梁体应力变化在安全范围内,采用有限元软件建立支座处箱梁节段实体分析模型及三维变截面梁单元模型,分析顶升期间梁体受顶部位的局部应力及顶升不同步引起的梁体应力,并进行顶升过程应力监测。结果表明:主梁受顶局部底板应力较大,将局部底板厚度由0.7m增至2.0m;顶升前、后梁体整体应力保持在±0.72 MPa以下,满足梁体应力的安全储备要求;顶升后,该桥的顶升位置偏差均小于0.005m,满足设计要求。该桥改造后已安全运营5年,主体构件未发现新裂缝,结构整体安全,证实了超百米级连续梁桥整体顶升的可行性。  相似文献   

10.
某地铁高架桥为65 m+120 m+65 m预应力混凝土变截面连续梁桥,建成后运营不久发现主梁产生较大的竖向下挠,并且主梁跨中底板出现较多延伸至腹板的横向裂缝。为了解主梁下挠和裂缝产生的原因以及目前桥梁的技术状况,对该桥梁进行了专项检测,并采用有限元软件进行结构验算。检测及验算结果表明:该桥梁体下挠和开裂的主要原因主要是梁体跨中预应力的损失,特别是底板束预应力损失过大或张拉不足而导致的梁体抗弯承载力不足。根据检测评估结果主要采用了体外预应力钢束进行维修补强。维修处治后的荷载试验表明,桥梁强度、刚度及动力性能均满足规范要求,桥梁加固处治效果良好。  相似文献   

11.
《广东公路交通》2017,(6):33-39
以省道S270线上的一座受船舶撞击的虎坑大桥为例,针对桥梁结构受到船舶的撞击,并结合检测报告,对受损主梁在不同布载宽度、主梁不同的竖向抗弯刚度折减的前提下对受损梁体进行活载横向分布计算,以评估在限载临时通行时受损梁体的受力分配比例。修复更换设计则应保证原有结构受力基本不变时,尽可能降低该桥受船撞击的几率及提高防撞能力,并能满足原桥的设计规范要求。  相似文献   

12.
以省道S270线上的一座受船舶撞击的虎坑大桥为例,针对桥梁结构受到船舶的撞击,并结合检测报告,对受损主梁在不同布载宽度、主梁不同的竖向抗弯刚度折减的前提下对受损梁体进行活载横向分布计算,以评估在限载临时通行时受损梁体的受力分配比例。修复更换设计则应保证原有结构受力基本不变时,尽可能降低该桥受船撞击的机率及提高防撞能力,并能满足原桥的设计规范要求。  相似文献   

13.
陈平 《世界桥梁》2023,(3):14-20
上海斜塘特大桥主桥采用主跨260 m双塔斜拉桥,跨越斜塘航道,承载四线铁路。对2种边中跨比斜拉桥方案进行对比,根据中跨静活载挠跨比、静活载梁端转角和活载负反力等分析结果,确定边中跨比采用0.38,主桥跨径布置为(40+60+260+60+40) m;对比3种钢-混组合梁截面形式的主梁刚度、经济性及无砟轨道适应性,主跨梁体选取高3.5 m的分离式双箱钢-混组合梁,边跨及衔接处主跨8 m段采用混凝土梁;对比H形和花瓶形桥塔的结构性能、施工方案,选取高97 m的H形桥塔;综合考虑结构刚度、轨道板变形和施工控制,中、边跨斜拉索梁上间距分别取12 m和8 m,桥塔最外侧斜拉索倾角取30°;索塔、索梁均采用钢锚箱式锚固结构。大桥整体结构计算结果安全可靠;温度、列车等荷载组合作用下,桥梁竖向刚度、换算曲率半径均满足规范要求。  相似文献   

14.
原芜湖中山桥为跨度63 m的下承式混凝土系杆拱桥,由于航道升级,需进行改建。该改建工程面临与城市道路衔接的问题,为解决该问题,提出了北侧布置环形道路的桥梁方案、全隧道方案、中二街布置T形交叉桥梁方案,对3种方案进行综合比选,推荐采用T形交叉桥梁的总体方案。该方案主桥采用带副弦的梁拱组合钢结构,跨径布置为(28+90+28)m,主梁采用梁高低矮的双边箱结构,系梁梁高0.9 m,引桥中二街交叉口采用T形平面钢板梁结构,梁高0.8 m。主桥上部结构采用岸上组拼、水中浮运的方案施工,引桥上部结构采用分段预制、逐段吊装的方案施工。中山桥改建工程建设速度快,对航道、城市环境的影响小,改建后的中山桥已成为芜湖中心城区新的标志性建筑。  相似文献   

15.
平潭海峡公铁两用大桥鼓屿门航道桥采用主跨364m的钢桁混合梁斜拉桥方案,桥址区水深流急、风大涌险、潮大浪高、地质复杂、冲刷严重、航道等级高、有效作业时间短。为适应该桥桥址气象、水文、地质等条件,考虑通航安全、技术可行及工程经济性等要求,确定采用高桩承台方案,并对3.0m、4.0m、4.5m钻孔桩基础方案进行比选,确定选用4.5m钻孔桩基础方案,按先平台后吊箱围堰的顺序施工。大直径桩基础中各桩采用单独配筋设计;防撞结构由吊箱围堰、V形防撞梁及联结系组成,采用可拆卸式设计,并在围堰外壁设置消波孔;钻孔桩采用KTY5000型动力头钻机,并配制PESF935型中压空压机循环排渣,利用泥浆护壁、锲齿或球齿滚刀钻头钻具切削岩面成孔;采用内径406mm的单导管法施工水下C45混凝土。  相似文献   

16.
成昆铁路攀枝花金沙江大桥采用跨径布置为(120+208+120)m的预应力混凝土矮塔斜拉桥。主梁采用变高度单箱双室预应力混凝土箱梁;桥塔采用H形钢筋混凝土结构,桥面以上塔高28m,塔高与跨径之比为1/7.5;斜拉索采用1 860MPa环氧涂层钢绞线,斜拉索穿过塔上分丝管索鞍后锚固于主梁上。该桥采用塔梁固结、墩梁分离的三摩擦副双曲面摩擦摆减隔震支座+剪力榫组合支承体系,不仅解决了桥梁的抗震,还有利于列车的平稳运行和梁端伸缩装置的设置;针对矮塔斜拉桥的特点,基于索梁活载比确定斜拉索索力和梁体预应力钢束的配置。对该桥进行车-桥耦合动力分析,分析结果表明桥梁的动力性能和列车过桥时的安全性与舒适性均满足规范要求。  相似文献   

17.
方海  王健  祝露  刘伟庆 《桥梁建设》2020,50(1):20-25
武汉鹦鹉洲长江大桥主桥为(200+2×850+200)m三塔四跨钢-混结合梁悬索桥,中塔墩提出采用自浮式筒形复合材料防撞装置,以减小桥墩的船撞风险。为研究该防撞装置的破坏模式及防撞效果,制作了4个缩尺比为1∶8的防撞装置试件进行准静态侧压试验,并采用ANSYS/LS-DYNA有限元软件对船桥的碰撞过程进行数值模拟。结果表明:在准静态侧压下,防撞装置的内面层层间剥离、外面层与泡沫剥离,内、外面层纤维均断裂;纵向格构层间剥离并屈曲破坏,降低格构间距可提高结构的弹性极限承载力和初始刚度;防撞装置可以降低船舶撞击力,延长撞击时间;船艏结构撞击后变形明显减少,应力降低。该防撞装置具有良好的防撞保护效果,能有效地降低船桥碰撞过程中桥梁和船舶的损伤。  相似文献   

18.
姚勇  向沛昀  李俊 《世界桥梁》2023,(4):107-113
某高速铁路线上的9座32、24 m预应力混凝土简支箱梁桥因地震发生梁体与支座连接螺栓剪断、梁体偏移等病害,需对桥梁震害进行整治,不切断钢轨、不扒除道砟,对梁体进行顶升与纠偏复位,并更换损坏的支座螺栓。仅顶升的梁体采用300 t单向顶升千斤顶,需纠偏复位的梁体采用300 t级三向千斤顶,每个支座布置2台,1孔梁共8台,千斤顶横桥向中心距2.77 m,顺桥向中心距0.8 m。对于梁体未偏移但需更换支座螺栓的梁跨,采用单墩四支座同步顶升;对于梁体偏移且需更换支座螺栓的梁跨,采用两墩八支座同步顶升。纠偏复位梁体时,采用PLC同步液压控制系统控制千斤顶同步顶升和平移,竖向位移控制在5 mm内。采用该技术顺利完成整治施工,实测梁体混凝土横向最大拉应力1.7 MPa,钢轨应力增量18 MPa,横向纠偏力1 600 kN,纵向纠偏力3 850 kN。  相似文献   

19.
朝阳新城东街大桥为(90+90)m独塔斜拉桥,其桥塔采用钢-混组合的V形双拱塔,设计新颖,景观效果显著。该文主要介绍了主桥、V形双拱塔设计,以及总体与局部关键部位的计算分析情况。结果表明:该桥结构设计合理,可为同类型桥梁的设计提供参考。  相似文献   

20.
G1501高速公路跨泖港大桥上跨平申线(上海段)航道。该航道是《上海市“十二五”内河高等级航道建设规划》中首批启动建设的航道,为黄浦江上游三大支流之一,目前航道等级Ⅴ改Ⅳ。改造过程中航道上桥梁被船撞风险高,通过对桥梁预防航道船舶碰撞预警系统工作模式与参数化技术、多源数据三维测量空间的平面转换算法与工程实现技术、基于多源数据融合的船舶通航异常行为的判别技术、桥梁预防航道船舶碰撞预警系统性能优化与工程测试技术等内容进行研究,突破基于多源数据融合的复杂背景下航道多目标检测/跟踪算法、基于多源数据融合的船舶-桥撞击态势预测等关键技术,泖港大桥采用主红外、可见光和激光测距三类传感器复合体制的航道桥梁主动防撞系统。从而实现全天候、全天时、全自动航道桥梁主动防撞监控及预警,其应用效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号