首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
未来年由一定比例的智能网联车与人工驾驶车辆组成的异质交通流是当前交通流领域研究的前沿和热点。为研究智能网联车与人工驾驶车辆反应时间的差异对异质交通流宏观特性的影响,基于智能驾驶员模型推导出了包含反应时间与智能网联车比例的异质交通流基本图模型。首先,考虑反应时间对驾驶行为的影响,对传统IDM进行了改进;其次,基于改进后的IDM推导出了异质交通流宏观基本图模型,并分析了反应时间与智能网联车比例对异质交通流通行能力的影响。同时,对模型中通行能力的影响因素进行了敏感性分析;最后,借助MATLAB与VISSIM搭建了智能网联环境仿真平台,对本研究提出的模型进行了验证。结果表明:(1)智能网联车比例的增大能提高异质交通流的通行能力,但反应时间对通行能力具有消极影响作用;(2)自由流速度越大,异质交通流的通行能力越大;(3)最小车头间距越大,异质交通流的通行能力越小,且最小车头间距每增加0.2 m,异质交通流的最佳密度减小约0.15 veh/km,对应的最大流量减小约10 veh/h。仿真试验显示不同智能网联车比例下的仿真数据与理论曲线有较高的一致性,从而表明理论模型是正确和有效的。  相似文献   

2.
交叉口是城市道路交通运行的瓶颈点,是造成交通拥堵的问题所在。交通控制是调控交通流、预防和缓解交通拥堵的关键策略,在效费比上具有较大优势。智能网联、自动驾驶技术的发展催生了常规车辆(Regular Vehicle, RV)、网联车辆(Connected Vehicle, CV)和智能网联车辆(Connected and Automated Vehicle, CAV)组成的智能网联新型混合交通流,推动着城市道路交通控制对象、数据环境和控制手段的变革,为交通控制提出巨大挑战的同时,也为交通控制理论方法的创新发展创造了新的条件。智能网联混合交通流交叉口控制已成为国内外研究热点,尚处于研究起步阶段。根据路权特征,先从单点交叉口、干线交叉口和路网多交叉口3个层面梳理智能网联混合交通流环境下的共用设施交叉口控制研究,包括交通信号配时、车辆轨迹/路径规划以及车辆轨迹-信号配时协同控制。然后介绍自动驾驶专用设施交叉口控制研究,包括CAV专用车道、CAV专用路段、CAV专用区域和快速公交-CAV混合专用车道。通过对现有成果的梳理发现:虽然新型混合交通流交叉口控制研究取得了部分进展,但RV驾驶行为的随机性、...  相似文献   

3.
基于流量和出租车GPS数据的城市道路网络宏观基本图   总被引:1,自引:0,他引:1  
为把握城市宏观交通状况,发掘城市道路网络交通流内在特性,从而达到缓解日益严峻的交通问题的目的,对交叉口流量和出租车GPS两类数据进行数据融合,运用宏观基本图(MFD)和广义宏观基本图(GMFD)在城市道路网络中的存在性以及二者之间存在的差异,以路网平均车辆数、路网通行能力和密度分布为指标来描述MFD和GMFD,并提出一种利用路段流量和出租车GPS数据拟合得到MFD和GMFD的方法,发现路网中密度的不均匀分布是导致路网通行能力不高的原因.针对由长沙市13个道路交叉口组成的区域路网,分别计算出分小区和分路段的MFD特征值,提出了根据存储空间能力(即临界路网平均车辆数的大小)对拥堵路网进行合理分流的方法,实现高峰时期拥堵路段的路径诱导以及路网通行能力的最大化.  相似文献   

4.
网联自动驾驶车辆(CAVs)与人工驾驶车辆(HDVs)混行的交通发展模式会促进城市路网容量发生变化,为解析混合交通流对城市路网容量可靠性的影响,构建了智能网联环境下城市路网容量可靠性双层规划模型。为表征CAVs信息获取与自动驾驶的能力,假定CAVs遵循系统最优原则选择路径,而HDVs则根据自身经验选择路径,基于二者路径选择的差异建立描述混合交通分配的下层模型,刻画智能网联环境下的混合交通流分配特性。并且,为了快速求解大型路网交通分配,将下层混合交通分配模型转换为非线性互补下问题进行求解。考虑到实际路网的随机性,以及路网道路通行能力并非固定值,运用具有多种相关性的均匀随机分布理论,建立了的描述城市路网容量可靠性的上层模型。通过蒙特卡洛仿真分析不同CAVs渗透率下的路网容量可靠性,并进一步解析各路段对路网容量可靠性的敏感度。结果表明:当需求水平d > 0.5时,路网容量可靠性开始降低;当d > 0.7且CAVs渗透率λ=0时,可靠性小于0.4;当d > 0.7而λ=1时,可靠性接近1,说明CAVs可增强路网容量可靠性。研究还发现,当需求水平处于0.7~1区间时,渗透率的变化对路网容量可靠性有显著的影响,但随着需求的增大,路网处于超负荷状态,渗透率对路网容量可靠性影响较小。此外,CAVs渗透率从0增加至1的过程中,路网中存在“道路容量悖论”现象的道路从19条下降至3条,且当λ=1时路网中仅有1条道路出现了显著的“道路容量悖论”现象,拥堵严重。表明CAVs渗透率的增大可以显著改善路网中的“道路容量悖论”现象,减少路网容量可靠性的波动,提高路网运行稳定性。   相似文献   

5.
为研究人工驾驶车辆和智能网联车辆(CAVs)的混合运行对交通流产生的影响,以其基本图和稳定性为突破口研究提高异质交通流运行效率的关键技术与方法。选择全速度差模型(FVDM)作为人工驾驶车辆跟驰模型,将加州伯克利分校实车数据标定的协同自适应巡航控制(CACC)模型作为CAVs跟驰模型。建立了异质交通流基本图模型,研究了CACC车辆的混入对道路通行能力的影响;对比了不同人工驾驶模型对异质流通行能力产生的差异性。从大车-小车组成的传统异质交通流研究方法入手,利用跟驰模型建立人工-网联异质流的稳定性解析方法,并运用Matlab验证了不同CACC比例下的稳定性分析。结果表明:与人工驾驶交通流相比,CACC同质交通流的道路通行能力大约提升了95%;实验中选用不同人工驾驶模型对通行能力实验结果造成的差异不大。平衡态速度为15 m/s时,低比例CAVs(如低于20%)并不能改善交通流;当CAVs比例达到20%及以上时,异质流稳定性随着CAVs的比例增加逐渐呈现出稳定趋势;当CAVs比例达到70%以上时,异质流基本稳定。   相似文献   

6.
秦严严  王昊  王炜 《中国公路学报》2018,31(11):147-156
LWR(Lighthill,Whitham and Richards,LWR)模型可推演交通流宏观状态演化过程,在智能网联环境下混有协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆混合交通流LWR模型的研究,可为该混合交通流的宏观动力学特性分析提供理论工具。应用加州伯克利PATH真车试验验证的CACC模型作为CACC车辆跟驰模型,采用智能驾驶人模型(Intelligent Driver Model,IDM)模拟驾驶人在智能网联环境中的"智能"驾驶特性。基于不同CACC车辆比例下的混合交通流基本图,证明混合交通流基本图的切线斜率为交通波在混合车队中传播的波速,建立混合交通流LWR模型的一般性解析框架,得到混有CACC车辆的混合交通流LWR模型。最后,针对LWR模型冲击波特性,在6组平衡态条件下进行数值仿真试验。研究结果表明:所建立的混合交通流LWR模型可较好地描述不同CACC车辆比例时冲击波在混合车队中的传播波速;冲击波波速理论值与仿真均值的相对误差基本控制在10%以内,当冲击波处于由正向波转变为反向波的过渡阶段时,相对误差较大,为19%~26%,但绝对误差仍然较小。研究结果一方面可为混有CACC车辆的交通流宏观状态演化提供理论参考,具有推动该混合交通流其他宏观模型研究进展的积极作用;另一方面,建立的混合交通流LWR模型解析框架能够适应CACC车辆与人工-网联车辆跟驰模型选取的多样性,同时可为其他类型混合交通流LWR模型的建立提供理论支撑。  相似文献   

7.
在城市道路交通中,信号交叉口区域内车辆频繁停车启动的现象,加剧了整体交通流的能源消耗、污染排放与车辆延误。为了减少信号交叉口启停波现象对整体交通流产生的负面影响,以面向未来人工驾驶车辆(HDV)/智能网联车辆(CAV)混合构成的新型混合交通环境为基础,提出了一种基于出发时刻预测的生态驾驶方法,通过优化CAV的驾驶轨迹,减少交叉口区域的车辆延误和能源消耗。首先,对混合交通流的基本图模型进行了分析,根据启停波影响范围,划分CAV通过交叉口的驾驶场景;然后,建立了子区渗透率对饱和车头时距的影响关系,预测了CAV以当前饱和车头时距通过交叉口的时间;最后,结合车辆与交叉口的距离,利用分段三角函数模型,生成其通过交叉口的速度限制曲线,并将优化速度嵌入到智能车辆的跟驰模型中作为限制速度,从而使CAV在无法通过当前绿灯窗口的条件下,实现提前减速,在通过交叉口区域后解除速度限制,切换回自身的跟驰模型。此外,还提出了平均综合效能这一指标来综合评价驾驶策略在效率和能耗2个方面的性能,并将提出的基于出发时刻预测的生态驾驶方法与传统网联车辆控制方法、经典交叉口节能控制方法进行了对比。研究结果表明:提出的出发时刻预测方法可以精确预测CAV在交叉口的出发时刻,有效减少车辆的能源消耗与污染排放,同时提高信号交叉口的通行效率;在渗透率大于60%情况下,该方法对系统效能的提高达到12%左右,在10%渗透率条件下也可以达到6%的效能增益;在交通饱和流率在0.5~0.9的范围内时,系统的效能增益较明显。  相似文献   

8.
针对协同自适应巡航控制(CACC)车辆市场普及过程中存在的CACC车辆、自适应巡航控制(ACC)车辆与人工驾驶汽车混合行驶的异质交通流,应用智能驾驶模型(IDM)和由加州大学伯克利分校PATH实验室实车验证的ACC模型、CACC模型分别作为人工车辆、ACC车辆和CACC车辆的跟驰模型,建立能够反映异质交通流中3种车型相互关系的解析表达。基于此,推导不同CACC车辆渗漏率p下的异质交通流基本图模型,并针对异质交通流基本图散点分布与基本路段通行能力,设计数值仿真试验。最后,针对ACC车辆和CACC车辆的期望车间时距进行参数敏感性分析。研究结果表明:建立的异质交通流解析表达与随机性仿真试验的误差小于1.5%,异质交通流基本图解析可取代基本路段通行能力的仿真试验,用于分析不同p时的异质交通流通行能力;ACC期望车间时距ta取值1.1 s时,交通流通行能力随着p的增加逐渐提升;当t_a=1.6 s,p低于30%时,异质交通流通行能力与传统人工车辆通行能力基本相当;当t_a=2.2 s,p低于40%时,异质交通流通行能力低于人工车辆通行能力;同时,CACC车辆期望车间时距tc越小,异质交通流通行能力越大;建立的异质交通流解析表达可为异质交通流其他特性的解析研究提供思路,异质交通流基本图解析结果,从通行能力的角度为ACC,CACC上层控制器设计提供期望车间时距取值的参考。  相似文献   

9.
在由智能网联汽车(CAV)与网联人工驾驶汽车(CHV)组成的混合交通环境下,以提升网联信控交叉口的行车效率、降低燃油消耗量为目标,设计了网联信控交叉口场景,在完成车辆运动学、跟驰及油耗建模的基础上,提出了一种基于车辆编队的网联车辆协同诱导策略,以平均行驶延误时间和平均燃油消耗量为评价指标,基于SUMO平台完成仿真测试。测试结果表明:在稀疏、欠饱和及过饱和交通流量条件下,随CAV渗透率的提升,通行效率和燃油经济性不断提高;在CAV渗透率低于60%时,CHV驾驶员服从度对协同行车诱导策略性能的影响更为显著。  相似文献   

10.
面向人类驾驶和具备协同自适应巡航功能的网联自动驾驶组成的新型混合交通流,考虑道路交通特性、道路结构以及匝道汇入前主线交通状态等因素的交互作用机理,基于概率统计理论解析网联自动驾驶渗透率和编队长度间的耦合关系,进一步基于间隙接受理论分析匝道汇入交通对合流区通行能力的折减效应,建立快速路合流区通行能力模型,定量描述不同道路条件下合流区通行能力如何随网联自动驾驶渗透率和编队长度变化。模型中的道路交通特性、道路结构及匝道汇入前部分交通状态参数根据实际道路交通环境标定,提升了模型的通用性与可迁移性。搭建内嵌车辆动力学模块的Vissim仿真平台进行模型评估,结果表明,模型精度在80%以上,且在不同网联自动驾驶渗透率和编队长度条件下皆表现良好。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号