首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
软弱土层地区基坑开挖对临近地铁隧道影响较大,基坑在施工开挖中,如何保证隧道的稳定和安全是基坑施工必须考虑和重视的问题。本文结合三维有限元软件Midas-GTS数值模拟计算基坑开挖对地铁隧道的影响,结合现场监测结果,来分析基坑设计方案的合理性。分析结果为:基坑开挖后,隧道竖向位移与水平位移整体有上浮趋势,能够保证基坑开挖过程中隧道管片结构的安全性。经过现场监测和实际施工验证,三维有限元软件MidasGTS数值模拟计算与现场监测隧道竖向、水平位移的趋势和结果基本吻合,能够有效指导现场施工,可为后续类似工程提供一定参考作用。  相似文献   

2.
针对深厚淤泥质软土地区、高承压水等不利条件下的基坑开挖对临近运营地铁隧道结构影响问题,以临近武汉地铁2号线某综合管廊基坑施工为背景,构建了三维数值分析模型,系统分析了基坑施工对自身围护结构变形、地铁隧道结构位移及受力的影响。研究结果表明:基坑开挖引起的围护结构水平向、竖向最大位移值分别为11.5 mm、1.44 mm,地铁隧道结构最大水平向、竖向位移分别为0.42 mm、0.21 mm,盾构管片最大轴力、剪力及弯矩分别为1 479.65 k N/m、48.38 k N/m、109.77 k N·m/m,数值分析结果均在规范限值以内。研究成果可为类似基坑施工对临近建构筑物安全风险评估提供借鉴。  相似文献   

3.
张敏  翟超 《路基工程》2019,(1):172-175
为了研究深大基坑开挖对临近地铁变形的影响,以天津某基坑为研究对象,运用PLAXIS3D数值分析软件,模拟分析了三种开挖工况下地铁变形特性。结果表明:深大基坑开挖导致的地铁车站及隧道水平位移大于竖向位移,但竖向位移的不均匀变化是导致车站及隧道开裂的主要原因;不同的卸载路径会导致不同的地铁变形特性,按照由远及近的开挖原则,选择合理的基坑开挖顺序,可以有效地减少地铁变形。  相似文献   

4.
为研究近接地铁隧道高层建筑施工对既有隧道稳定性的影响,以重庆市某近接地铁隧道高层建筑为例,利用大型有限元计算软件Midas-GTS建立三维有限元计算模型并开展数值模拟。数值模拟中采用的施工工序与实际工程一致,着重分析高层建筑施工各个阶段围岩变形,衬砌位移、内力的变化规律。研究结果表明:建筑物修建对左线隧道影响显著大于右线隧道;隧道衬砌最大变形出现在基坑开挖阶段,最大水平、竖向位移分别为1.45、3.64 mm;由于建筑物与隧道斜交,左、右线隧道最大位移出现断面有所不同,但均出现在距模型正面40~60 m范围内;衬砌内力随建筑物施工呈先减小后增大的趋势,基坑开挖阶段左隧道衬砌内力较隧道开挖完成时降低了15.5%。研究结果可为类似工程提供一定的依据和指导。  相似文献   

5.
本文以青岛市某中水管线完善工程为背景,该工程采用水平定向钻施工方法,施工采用分级扩孔,管线临近青岛地铁2号线辽阳东路站-东韩站区间,管线与地铁区间结构外边线最小水平距离4.5米,区间地铁现已正常运营,水平定向钻施工可能会引起地层移动和变形,导致青岛地铁2号线辽阳东路站-东韩站区间结构随之发生移动和变形。基于此,本文采用数值模拟方法,建立仿真模型,计算分析水平定向钻施工过程中,不同孔径条件下,泥浆压力和管线与隧道的水平净距对既有隧道变形的影响规律。计算分析得水平定向钻开挖后,该地铁区间结构水平位移0.967mm,横向高差0.152mm,水平定向钻开挖对隧道的影响在安全可控范围内。  相似文献   

6.
以天津市某工程为背景,采用有限元分析方法,对地铁隧道管片和车站结构的位移进行计算,并与现场实测结果进行对比,以此来研究基坑开挖施工对地铁结构的影响。研究结果表明:基坑开挖过程中地铁结构产生了一定的水平和竖向位移,其中,隧道管片的位移大于车站主体结构的位移;数值模拟结果与现场实测数据变化趋势基本一致,数值比较接近,二期基坑顶板施工完毕时,隧道管片水平位移最大实测值和模拟值分别为-3.91,-4.97 mm,竖向位移分别为-3.02,-3.41 mm,模拟结果与实测数据均在变形控制标准之内;基坑开挖过程中,隧道管片水平和竖向位移均呈现出两端小、中间大的抛物线变化趋势,最大值出现在邻近基坑开挖侧隧道管片位移监测区段的中点处。  相似文献   

7.
新建地铁隧道临近地表既有建筑物,在地震作用下地面临近建筑物的存在必然会对地层产生扰动,引起地铁隧道结构抗震性能的变化。该文以双线地铁隧道侧向下穿某既有多层建筑物为研究对象,构建地面建筑-土层-地铁隧道结构共同作用体系二维数值计算模型,分析临近建筑物对地铁隧道结构地震反应特性的影响。同时研究了隧道与建筑相对位置变化及不同的地震波对地铁隧道抗震性能的影响。研究结果表明:1临近建筑使得地铁隧道拱顶与拱底相对位移有所增大;2地表建筑物存在,使得隧道衬砌结构动内力比无建筑时明显增大,拱肩与拱脚处内力最大;3建筑物与隧道相对位置改变也会对地铁隧道抗震性能产生影响。  相似文献   

8.
为解决多条近接隧道施工时后行隧道开挖对先行隧道结构造成的不利影响,以天津地铁5、6号线四线交汇隧道为研究对象,选取典型复杂断面,采用数值软件FLAC3D,模拟富水地层中四线交汇隧道开挖时隧道结构之间的相互影响规律。结果表明: 该复杂断面处,后行隧道施工使先行隧道整体位移具有偏向开挖隧道移动的牵引趋势,且先行下部隧道竖向整体位移较横向整体位移变化更为显著。在渗流作用下,先行下部隧道施工产生的地表沉降量及沉降范围相比后行上部隧道较大,验证了富水地层中渗流作用对土体变形影响程度及范围均远大于开挖应力释放的影响。  相似文献   

9.
《公路》2017,(9)
为了保证隧道施工和后期运行的安全,要选择出一个普遍适用于大断面矩形隧道的开挖方案。采用FLAC3D有限差分软件对3种不同的施工方案进行数值计算,对施工过程中隧道周围岩体位移、地表沉降以及周围岩体应力变化的计算结果进行对比分析,结果表明,采用先开挖隧道两侧岩体,后开挖隧道中部岩体的施工方案在应力集中程度和地表沉降方面比其余两种方案最大可降低41.3%和9.5%;隧道开挖过程中对地表沉降影响的范围大致为隧道跨度的5倍;浅埋大断面矩形隧道两侧岩体水平位移模式为向隧道外侧位移,与一般隧道不同。最后,优选出的施工方案将为大断面矩形隧道的实际施工提供参考。  相似文献   

10.
采用随机介质理论和剪切位移法,计算在桩基影响下地铁隧道开挖引起的地表沉降,得到了考虑桩基效应地铁隧道开挖引起地表位移的解析解。对影响地表沉降大小的主要参数进行了敏感性分析。并通过工程实例验证了结果的可靠性。结果表明:隧道工后收缩量是地表沉降量大小的主要影响因素;计算方法可有效预测类似工程的地表沉降。  相似文献   

11.
徐涛  陈梁 《路基工程》2020,(6):86-92
以合肥地铁3号线邻近的经开区大学城地下空间开发工程为背景,采用理论分析、数值模拟的方法,分析了基坑围护结构施工、基坑开挖及主体结构回筑过程中基坑对既有隧道的变形响应。研究结果表明:基坑施工对邻近既有隧道的影响主要以水平位移为主,同时大断面基坑开挖对隧道的影响较小;施工过程中,基坑及既有隧道结构的位移在容许的范围内,验证了围护结构的合理性。  相似文献   

12.
李刚 《隧道建设》2013,33(11):908-913
2条平行暗挖输水隧道从北京地铁五棵松站下方穿过,2条隧道中心间距为94 m,隧道毛洞顶部距离车站底板仅3717 m,属于近接施工问题。为了确保输水隧道施工时,地铁车站结构及轨道的安全,采用三维有限元仿真分析的方法对输水隧道开挖全过程进行模拟。通过对地表位移和车站顶、底板位移随开挖过程变化规律进行计算分析,得出需要对输水隧道扩大段、注浆通道和下穿隧道周围的土体进行注浆加固,才能确保地表和轨道位移不超过规范所规定的限值,并提出为了降低施工过程中,地铁车站两侧因不均匀沉降而产生的扭矩,需要在车站两侧采用对称施工的建议。  相似文献   

13.
易丹  严德添  党军 《隧道建设》2018,38(4):594-602
以川大停车场下穿人民南路地下人行通道矩形顶管隧道工程为依托,采用数值模拟方法对大断面矩形土压平衡式顶管隧道上跨地铁运营区间隧道所引起的地铁隧道变形进行全过程分析研究,并将模拟结果与现场监测数据进行对比,验证模型的合理性。主要结论如下: 1)顶管法隧道上跨施工引发的既有地铁隧道竖向变形受前期掌子面支护压力影响较大,随着开挖面的推进,开挖卸载效应逐渐占据主导地位; 2)地铁隧道横向位移受顶管隧道掌子面支护压力和开挖卸载效应的共同影响,且地铁隧道管片衬砌上半断面的横向位移对掌子面支护压力极为敏感。  相似文献   

14.
为研究地铁深基坑邻近隧道施工时既有隧道的受力与变形特性,以南京地铁9号线管子桥站基坑工程为背景,通过三维有限元分析,研究基坑开挖引起的既有隧道的受力与变形特性,计算结果表明:地铁基坑开挖引起的既有隧道最大沉降值为7.32 mm,最大水平位移为5.74 mm,隧道变形满足相关规范要求;隧道主体沿Y方向和Z方向产生的位移远大于沿X方向产生的位移;基坑开挖时,隧道敞开段与暗埋段会产生沉降差异,施工时应采取相应措施控制沉降差。  相似文献   

15.
为了优化近地铁段桩基施工技术,提高地铁隧道保护效果,采用监测涉地铁试桩工程施工过程引起的隧道水平变形和沉降位移变化的方法,并结合施工工况,分析不同净距、不同桩基类型下桩基施工引起的地铁变形特点。研究表明: 1)桩基施工距离地铁隧道净距5 m,采用全套管全回旋钻机施工时,对隧道水平收敛位移的影响大于沉降位移,全回转钻机施工过程中应注意取土时机及速度。2)桩基施工距离地铁隧道净距12 m,采用全回转半套管工艺施工时,对隧道沉降的影响大于水平收敛位移,套管长度需满足穿透承压水层。3)桩基施工距离地铁隧道净距为20 m时,可使用常规旋挖钻机施工; 隧道水平位移在施工过程中的变化规律为先向远离桩基的方向变化,之后随着取土回移; 隧道沉降位移的变化规律为先向下沉降,之后随着深度的增加逐渐平稳。  相似文献   

16.
昆明地铁首期工程一号线临近昆明火车站区间采用近距离重叠隧道方案通过,其上下垂直净距仅1.8~4.0 m,盾构施工期间的地表位移对既有建筑物的正常使用将会造成影响,是地铁施工中应重点控制的关键。因此,运用PLAXIS数值软件,对设计盾构方案施工条件下的地表沉降及上下隧道关键部位的位移,进行数值模拟,以评估设计方案的可行性。对上下隧道的洞顶、洞底及隧道中心线所对应地表的位移进行了数值模拟与监测的对比分析。结果表明:在既有设计方案条件下,各处位移均小于昆明地铁监测项目控制值,可以采用设计方案中的盾构参数进行施工。  相似文献   

17.
地铁隧道穿越地裂缝施工对既有桥梁影响分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以西安地铁二号线穿越长安立交和f6地裂缝段为例,利用ABAQUS有限元软件对地铁穿越地裂缝施工对既有桥梁建立三维模型进行模拟分析,并将现场监测数据与数值模拟结果进行对比分析,得出以下结论:1)地铁穿越地裂缝施工对既有桥梁桥墩具有一定的影响,对第3排桥墩沉降影响明显;2)地裂缝在短期内对地铁隧道开挖的影响不明显,需对地裂缝处结构进行长期监测。同时,建立了地铁隧道与地裂缝相距不同水平距离的二维模型,通过分析给出了在西安地区临近地裂缝开挖地铁隧道的建议最小设防距离为3倍隧道直径。  相似文献   

18.
基于广州洛溪大桥拓宽工程现场监测数据,对旋挖钻孔时临近隧道结构的变形进行分析,以研究旋挖钻孔成桩技术对临近地铁隧道结构的影响。该工程中,当桥梁桩基距离地铁盾构边线超过7 m时,采用旋挖钻机成孔施工方法;当桩基与地铁盾构边线的距离减小至约3.0 m时,采用旋挖钻机与全套管全回转钻机联合成孔施工方法。现场监测结果表明,桩基施工过程中,地铁隧道监测点平行于隧道中轴线方向的累计位移最大值为2.41 mm,垂直于隧道中轴线方向的累计位移最大值为1.94 mm,垂直于地面方向的累计位移最大值为2.02 mm,均在合理范围内。地铁左、右轨道差异沉降值存在超过2 mm但小于3 mm的现象,道床平顺度也存在个别监测值超过2 mm/10 m但小于3 mm/10 m的现象。本工程旋挖钻孔施工方法对地铁隧道变形影响较小,但左右轨道差异沉降与道床平顺度应该受到重点监测。  相似文献   

19.
为了研究软土区深基坑施工对邻近既有盾构隧道变形影响及保护措施,以杭绍甬高速公路明挖隧道与杭州地铁1号线盾构隧道交叉节点工程为依托,采用有限元数值模拟方法,依次分析了采取不同工程措施后,盾构隧道主体结构的变形情况,并将计算最终位移变形量与实际监测位移结果进行了对比。结果表明:上方基坑开挖对下方盾构隧道的影响显著,在无任何辅助加固措施情况下,盾构隧道最大竖向变形量远超允许变形量;采用地基加固、抽条开挖、“门式框架”、及时反压等工程措施后,对盾构隧道竖向位移的控制作用显著;现场位移监测结果与数值模拟位移结果相吻合,表明本文提出的工程措施合理可行。  相似文献   

20.
为了保证在我国黄土地区城市地铁盾构开挖在靠近桩基础时的安全性,降低盾构开挖对桩基础的扰动影响,基于ABAQUS数值模拟有限元分析软件,采用土体的修正剑桥本构关系,建立地铁盾构法开挖施工的三维有限元分析模型。对隧道盾构开挖过程中邻近桩基础的变形和地表沉降规律进行了计算分析。研究结果表明:隧道盾构对邻近桩基础的影响主要表现在桩基础的隧道埋深位置处,垂直隧道纵轴的水平方向(X方向)位移量上;在盾构开挖过程中,随着开挖面与桩之间距离d缩小,桩的水平方向位移逐渐增大;在d大致为[-0.5D,+0.5D]范围内时,变形最大;当d继续增大时,水平方向位移也继续增大,最终趋于稳定值。通过综合分析数值模拟计算和施工现场监测得到的地表位移变形曲线,可以发现在隧道轴线正上方位置地面的沉降最大,向隧道轴线两侧沉降逐渐减小,但在桩基附近的地表沉降相对较小,而桩顶承台也受到不均与沉降的影响产生偏移。在该隧道工程实际开挖中,需要加强承台不均匀沉降监测,以便及时采取控制措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号