首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
挂索是斜拉桥施工工艺中极为关键的环节之一,如果施工不慎,就会损伤斜拉索、增长施工工期。本文以灌河大桥为工程背景,简要介绍斜拉索施工全过程以及斜拉索修补,本桥通过计算斜拉索无应力索长和挂索牵引力,提出了短索和长索分别采用"反牵引(先安装斜拉索的塔柱张拉端,后安装斜拉索的桥面固定端,然后张拉塔柱端斜拉索)"与软、硬牵引相结合的技术进行挂索,并巧妙利用了桥面展索和脱空展索相结合的工艺,在斜拉索桥面展索使用塔吊、卷扬相结合的方法,梁端安装采用桥面吊机、卷扬机相结合的方法,提高了斜拉索的安装效率和质量,加大了施工的可操作性和安全性,节约施工成本。  相似文献   

2.
黄冈公铁两用长江大桥主桥为双塔双索面钢桁梁斜拉桥,跨度布置为(81+243+567+243+81)m.每桥塔两侧各设置19对斜拉索,全桥共有斜拉索152根,对该桥斜拉索安装技术进行总结.采用全回转架梁吊机将整盘斜拉索吊至桥面;采用全回转架梁吊机配合桥面上固定式放索盘进行桥面展索;斜拉索总体挂设采用先塔后梁的方案,利用塔吊和塔顶吊架完成塔端挂设;采用卷扬机及滑车组进行斜拉索梁端牵引,牵引到位后进行锚固;梁端安装完成后,3~8号斜拉索直接进行塔内刚性牵引,9~19号斜拉索先进行塔内软牵引(最大软牵引力为1 200 kN)再进行刚性牵引;按设计要求对斜拉索进行分级同步对称张拉.该桥全部4 000余吨斜拉索的安装在7个月内全部完成.  相似文献   

3.
郧县汉江大桥为(86+414+86)m地锚式预应力混凝土斜拉桥,每塔两侧各布置2×25根斜拉索。检测发现:斜拉索索力和设计理论状态误差较大,PE护套损伤,钢丝锈蚀严重,斜拉索系统属于四类部件。为确保桥梁结构的长期安全,结合该桥斜拉索体系病害情况,运用等强度换算原理,设计新斜拉索[采用镀锌平行钢丝、PES(HD)低应力全防腐索体、全防水结构等多项技术],替换全桥旧斜拉索。斜拉索更换顺序为病害斜拉索优先,单塔对称、双塔反对称,由长索到短索的原则进行更换。有限元结果表明,在整个换索过程中,斜拉索、主梁和桥塔结构变形、应力和强度验算均能满足规范要求。换索施工工序为旧索放张→旧索拆除→新索安装与张拉→索力调整。通过优化施工工艺,长索单塔换完后,2个点4根索同时更换,将换索工期降低到120d,极大地缩短了施工工期。  相似文献   

4.
黄清 《世界桥梁》2012,(2):63-68
黑尔·博格斯桥于1983年10月5日通车。桥上一些斜拉索的PE保护套在斜拉索安装之前、安装期间及大桥通车之后均有损坏,自2002年以来为改善黑尔·博格斯桥的状况进行了斜拉索状态的评估及更换。为解决这些损伤并保证桥梁结构的完整性,对5个更换斜拉索的方案进行全寿命周期成本分析,最后采用更换全桥斜拉索方案。设计更换的斜拉索设计寿命为75年,重点对斜拉索锚固位置的几何限制,防腐、振动控制进行设计。由于该桥是一个重要的区域连接工具,且构成一个飓风疏散路线,因此在换索施工期间的交通维护也是设计重点。  相似文献   

5.
为确定无背索部分斜拉桥斜拉索的合理张拉施工方案,以溱水路大桥为例,对该桥斜拉索一次张拉和分级三次张拉的施工方案进行研究.应用MIDAS Civil有限元软件建立该桥空间有限元计算模型,采用数值仿真方法研究斜拉索一次张拉和分级三次张拉对该桥结构力学行为的影响,探讨斜拉索分级张拉施工的合理性,并基于影响矩阵法进行成桥索力调整.结果表明:该桥分级三次张拉斜拉索的施工方案较为有利,且施工可行,成桥后可采用影响矩阵法进行索力调整,仅需较少次数索力调整即可达到索力设计目标,可避免反复进行斜拉索张拉调整的繁琐施工工序.  相似文献   

6.
沪苏通长江公铁大桥主航道桥为主跨1 092m的公铁两用钢桁梁斜拉桥,斜拉索最长达576.193m、重达83.5t。针对该桥斜拉索超长、超重的特点,施工期和运营期分别采用临时阻尼减振装置和永久附加阻尼减振装置来抑制斜拉索振动。施工期斜拉索临时阻尼减振装置通过在传统钢丝绳措施上串联1个阻尼模块,适应不同施工阶段斜拉索的状态变化,并控制斜拉索施工期的振动。运营期采用新型电涡流杠杆质量阻尼器(ELMD),利用电涡流阻尼器控制斜拉索面内振动、油阻尼器控制斜拉索面外振动,并进行实桥试验验证。结果表明:斜拉索的阻尼对数衰减率达7%,满足斜拉索阻尼减振要求;ELMD阻尼器安装后,风荷载激励下的振幅从2.15g降低至0.04g,共振主频消失、减振效果明显。  相似文献   

7.
潘斌 《城市道桥与防洪》2020,(1):108-110,M0013
斜拉索作为斜拉桥的承重构件,斜拉桥梁体施工完成后,主塔采用竖转施工,再进行斜拉索的安装施工,这使得桥梁斜拉索挂设成为全桥的施工难点。以金汇港大桥为王程背景,分析斜拉索施工难点,针对难点的处理对策及施工技术要点,对独塔斜拉桥拉索安装施工工艺进行了应用研究。  相似文献   

8.
滨州黄河公路大桥斜拉索安装工艺探究   总被引:1,自引:0,他引:1  
卢发亮  王晓声 《公路》2005,(5):40-44
滨州黄河公路大桥主桥为6跨连续PC箱梁三塔双索面斜拉桥,斜拉索为直径7mm的镀锌高强低松弛钢丝。斜拉索安装分为放索、安装、牵引、张拉4道工序。为保护斜拉索PE保护层,斜拉索吊装时采用尼龙绳,运输采用自制的运索平车,运索平车设有导向转盘,放缩盘增设刹车装置。在塔上安装大吨位的斜拉索时首次采用两道索夹牵引的方法,减小了导链引索的引力,有效避免了斜拉索的滑脱。斜拉索张拉分3次进行,第1次张拉时为避免引索时刮伤保护层,针对挂篮悬浇端和支架现浇端的特点,分别设计制作了挂篮端引索支撑架和现浇端引索支撑架。斜拉索安装工艺改进后,有效地保护了斜拉索PE层,提高了工作效率和安全性。  相似文献   

9.
某桥斜拉索索长较短,整体质量较轻,如采用常规的斜拉索挂设方法,需要配置专用起吊索夹、临时牵引锚固件等辅助工装。为简化施工过程,节省辅助工装投入,根据每根斜拉索的索长情况,在斜拉索锚头后端合适位置安装牵引吊带实现斜拉索的便捷吊装,塔端、梁端合适位置设置转向滑轮实现快速牵引转向定位,从而实现斜拉索的快速架设,也丰富了中小型斜拉桥拉索快速挂设形式。  相似文献   

10.
郑州黄河公铁两用大桥主桥第一联为六塔钢桁梁斜拉桥,为研究环境温度变化对该桥斜拉索的影响,以该桥健康监测数据为依托,分析斜拉索自振频率与环境温度间的相关性。采用优化基频算法获得稳定的斜拉索实测基频数据,并对斜拉索基频信号进行小波分解及重构,获得斜拉索基频与重构基频的差值,基于差值的统计特征进行基频数据的修正,分析各个时段斜拉索的温频相关性。结果表明:环境温度与斜拉索基频间存在显著的线性相关关系,该桥5号塔边索基频随着温度升高而降低,温频线性相关性系数集中在[-0.983 7,-0.890 4];雨天时段温频整体数据相关性不明显;凌晨时段斜拉索基频受温度影响较小,中午时段环境温度与斜拉索基频间显著相关。  相似文献   

11.
江苏省芜申线航道泓口大桥主桥为(52+102+52)m自锚式悬索桥.该桥加劲梁采用预应力混凝土边箱梁形式,在支架上现浇施工;桥塔采用钢筋混凝土矩形实心截面柱式结构,桥塔高27.902m,下部采用整体式哑铃形承台;主缆采用Φ4.8 mm镀锌高强钢丝,吊索采用φ7 mm镀锌高强平行钢丝,鞍座为整体铸造结构.采用有限元软件MIDAS Civil 2010和悬索桥非线性分析软件BNLAS建立全桥有限元模型进行计算分析,计算结果表明泓口大桥结构的应力均能满足规范要求.  相似文献   

12.
宜昌长江公路大桥桥位、桥型及桥跨的选择   总被引:1,自引:0,他引:1  
宜昌长江公路大桥桥型选择为双塔钢箱梁悬索桥,主跨960m。桥位,桥型及桥跨的选择是该桥前期准备工作的主要技术问题,着重介绍桥位,桥型及桥跨选择中考虑和研究的主要因素。  相似文献   

13.
重庆双碑大桥主桥斜拉桥设计   总被引:2,自引:2,他引:0  
重庆双碑大桥主桥为主跨330 m的高、低塔中央索面混凝土曲线斜拉桥。主梁采用单箱三室混凝土结构。桥塔采用独柱式,低塔边跨侧位于曲线上,为减少索的横向分力对结构的影响,靠曲线外侧布置竖向预应力钢绞线束。斜拉索采用高强低松弛镀锌钢绞线索。结合地质情况,高塔墩采用24根φ2.5 m钻孔灌注桩基础;低塔墩采用明挖扩大基础。高、低塔均采用塔、墩、梁固结体系。为减少塔根弯矩,下塔墩中间设20 cm的竖缝;通过优化桥塔尺寸,有效控制了主梁横向扭转角和桥塔横向位移。高塔墩基础采用双壁钢围堰法施工,低塔墩基础采用围堰或筑岛辅助施工;主梁7 m标准节段采用前支点挂篮现浇施工。  相似文献   

14.
虎门大桥悬索桥钢箱梁架设   总被引:1,自引:0,他引:1  
钢箱梁梁段的架设属于大吨位构件的起重吊装,其影响面牵涉到通航,驳船运输及定位,塔身变形控制等,因此施工难度大,论文从虎门大桥悬索桥施工为实例,介绍了钢箱梁梁段架设中的主要工艺及使用设备。  相似文献   

15.
根据金塘大桥桥址气象、水文、地质等条件,分析了影响海上桥型方案的多种因素,结合国内外已建跨海大桥的经验,从减少海上作业量、降低施工风险、保证工程质量、合理控制工期、简化施工组织、降低工程造价等方面进行了综合分析,提出金塘大桥非通航孔桥的设计方案.  相似文献   

16.
蔡俊镱 《桥梁建设》2021,(2):105-111
淡江大桥主桥跨越淡水河口,主桥采用单塔不对称半飘浮体系斜拉桥,全长920 m,跨径布置为(2×75+450+175+75+70)m,主跨450 m,桥面净宽44.7 m,桥下通航净高20 m,倒Y形桥塔高200 m。在桥塔及两端伸缩缝处的桥墩设置减隔震阻尼器,主梁采用钢箱梁(长660 m)及钢-混结合梁(长260 m),斜拉索按扇形双索面布置,共94根斜拉索。桥梁设计寿命为120年,依据基于性能的设计规范AASHTO LRFD及性能化抗震设计,结构强度满足规范要求。采用风洞试验与数值风力分析验证主桥结构的气动稳定性,结果表明当风速达100 m/s时,结构仍然稳定。  相似文献   

17.
丫髻沙大桥主桥设计   总被引:14,自引:0,他引:14  
丫髻沙大桥主桥采用76m+360m+76m三跨连续自锚中承式钢管混凝土拱桥,跨越珠江南航道。详细介绍了主桥的总体设计、几何非线性分析、徐变分析、动力分析。  相似文献   

18.
新安大桥主桥为三跨变截面波形钢腹板连续箱梁桥,跨径布置为88m+156m+88m。该文介绍了主桥的总体布置、结构设计、关键构造、指导性施工顺序和技术创新。  相似文献   

19.
广东鹤南大桥受毗邻的广珠铁路桥跨径布置限制,桥型选择较为困难.经过一系列研究,先后提出了下承式拱桥、混凝土刚构桥、混凝土斜拉桥、混合梁刚构桥四种桥型,并从安全、美观、经济、施工、养护几个方面进行比选,认为混合梁刚构桥方案可以作为鹤南大桥的推荐桥型方案.可供桥跨布置限制、小边中跨比的桥型设计借鉴.  相似文献   

20.
肖军  李浩 《公路》2005,(3):105-108
蠡河大桥主桥跨越干线V级航道蠡河,上部结构为49.5m 90m 65.5m不对称变截面悬浇预应力混凝土连续箱梁。介绍了主桥的设计概况、主拉应力控制、合拢段设计、箱梁横断面设计及上部施工不平衡重对主墩的影响等几个重点问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号