首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
长昆客专罗旧舞水特大桥主桥为(48+2×80+48)m连续梁桥,1号~3号桥墩位于主河槽内,低桩承台嵌入河床裸岩中,设16根1.5m钻孔桩。根据裸岩河床、低桩承台的特点,确定水中墩基础施工采用施工栈桥为交通便道、施工平台,栈桥标准跨度18m,设4组贝雷梁、双排钢管桩基础,并在钢管桩周围抛填砂砾、投放石笼或下放钢套箱、灌注水下混凝土以及拉设缆风绳。水中墩基础采用矩形双壁钢围堰围护方案,按照"先堰后桩"顺序施工。水中墩基础施工中,采用长臂挖机清底,利用岩石乳化炸药和非电微差雷管进行水下岩石爆破;钢护筒采用振动锤夹持、插打;双壁钢围堰依靠钻孔桩护筒、平台辅助钢管桩逐块拼装,用倒链下放、汽车吊接高下沉施工;围堰封底混凝土等强后,进行钻孔桩、承台和墩柱施工,最后拆除围堰。  相似文献   

2.
安庆长江铁路大桥采用双塔三索面钢桁梁斜拉桥和6孔64 m跨现浇简支箱梁布置形式,铁路4线.深水区3号、4号桥塔墩采用先围堰后平台的双壁钢围堰施工方案;5号墩桩基采用定位桩平台施工方案,承台采用双壁钢围堰施工方案.浅水区6号、7号及W01号、W02号桥墩桩基采用双栈桥加定位桩平台施工方案,承台采用钢板桩围堰施工方案.桥塔起始段采用支架法施工,其余采用大节段液压爬模施工;横梁采用支架法施工,分2层浇注.主桥无索区钢梁采用膺架法架设,桥塔墩有索区钢梁采用架梁吊机对称伸臂架设;在3号墩设置桁内开启式提升站取梁;全桥设2个合龙口,先中跨、后边跨合龙.非通航孔桥64 m箱梁采用支架法现浇施工.水中墩平台、围堰及栈桥考虑不同设防水位.该桥已于2012年12月实现多点精确合龙.  相似文献   

3.
公安长江公铁两用特大桥主桥为(98+182+518+182+98)m双塔钢桁梁斜拉桥,该桥4号主墩采用2.8m/3.1m变直径钻孔桩承台基础,共有36根桩,承台为圆端形,长58.4m、宽33.6m、高6m,承台埋置于河床中。4号墩基础采用双壁钢套箱围堰施工方案,先围堰、后平台,先钻孔、后封底,最后进行承台施工。施工中采取了以下关键技术:底节围堰(长68.2m、宽40m、高16m)采用气囊法整体下河;由底节围堰、围堰内支撑桁架和桩位钢护筒组成半浮式水上平台作为钻孔平台;钻孔桩采用泥浆护壁的气举反循环旋转钻进工艺成孔;在钻孔桩施工后,下放围堰并接高,灌水、吸泥、下沉围堰,下沉到位后分区进行围堰封底,围堰抽水,分2层、按大体积混凝土工艺进行承台施工。  相似文献   

4.
在深水桥梁施工中,钢栈桥作为关键的建筑材料运输线,对下部基础施工起到至关重要的作用,无覆盖河床中钢栈桥难以自稳,在流水压力作用下容易发生倾覆,针对流水作用下钢栈桥容易倾覆的问题,采用了两种方案进行对比分析:一种钢栈桥采用排桩,每排桩设一个钢管,间距3.5m;另一种方案,采用板凳桩并设置水平悬链线钢丝绳对每个栈桥桩处进行悬索拉结,形成水平悬索钢栈桥,索锚固于主体结构桥墩处。通过对比,悬索钢栈桥由于把管桩悬臂受力状态,改为一段固定一段铰接受力状态,极大地降低了管桩最大弯矩,增强了抵抗流水压力的能力,但悬索只能在主体结构钻孔桩完成后施作,所以需在洪水期以前做好悬索;排桩钢栈桥相对板凳桩单排水平刚度有所增强,结构形式没变,抵抗洪水能力较弱。两种方案都需要与钻孔桩钢护筒可靠连接。  相似文献   

5.
沪通长江大桥天生港专用航道桥为(140+336+140)m的三跨连续刚性梁柔性拱桥,该桥3号主墩采用36根2.5m钻孔桩基础、深埋式矩形承台,承台尺寸为55m×25m×6.5m。承台采用双壁钢围堰(尺寸为58.1m×28.1m,高20.6m)施工,钢围堰作为施工期间的挡水结构及承台混凝土浇筑的模板。采用ANSYS软件建立钢围堰结构有限元模型,通过封底混凝土应力及封底混凝土与钢护筒的握裹力计算,确定采用厚度为3.4m的C25混凝土封底。3号主墩钢围堰吸泥下沉至顶面高程+5.2m后,采用中心集料斗与罐车自卸封底相结合、多导管布置、从上游往下游推进的方式进行封底混凝土施工。封底混凝土完成后,未发现漏水,封底施工取得圆满成功。根据现场施工情况,针对封底混凝土质量和导管布置方案提出了优化建议。  相似文献   

6.
秀山大桥为双塔三跨钢箱梁结构悬索桥,其跨径为264m+926m+357m=1547m,官山侧主塔采用扩大基础结构,秀山侧主塔采用承台和桩基础结构,官山侧和秀山侧锚碇均采用重力锚结构。秀山侧主塔位置海床基岩裸露,倾斜角度大,无覆盖层,且水深流急,最大水深为16. 1m,最大流速可达4m/s,根据图纸要求承台采用双壁钢围堰施工,且钢围堰作为防撞消能设施永久保留,钢围堰的设计、施工难度大,国内少见,可借鉴的施工经验也较少,秀山侧主塔承台钢围堰的顺利实施为今后在类似复杂海况下桥梁基础施工提供了一定的应用价值和参考价值。  相似文献   

7.
正2015年11月28日,商合杭铁路芜湖长江公铁大桥主桥2号桥塔墩底节钢围堰顺利下水,并在3艘拖轮的护送下于当日在设计墩位处完成初定位。2号桥塔墩基础采用44根3.0 m钻孔灌注桩,基础采用先围堰后平台的施工方案,围堰既是承台施工的挡水结构,同时也是钻孔桩施工的平台。此次下水的底节钢围堰为双壁钢套箱围堰,平面尺寸为71.2m×35m,高17m,重约2 415t。  相似文献   

8.
《公路》2017,(10)
通过与传统施工方法的比较,以应用实例为引导,提出采用钢栈桥、钢平台、钢护筒、钢管桩围堰等辅助措施,快速进行桥梁桩基、承台施工的方法。  相似文献   

9.
平潭海峡公铁两用大桥的FPZQ-3标段全长约11.15km,包括3座通航孔桥(双塔钢桁混合梁斜拉桥)、119孔非通航孔桥(混凝土梁桥)、34孔引桥(简支钢桁结合梁桥)。针对桥位处施工条件恶劣、工程量巨大、作业时间短等特点,基础施工采用长栈桥、先平台后围堰的方案,其中栈桥全长约7.5km,通航孔桥采用打入桩、导管架及"打入桩+锚桩"3种钻孔平台方案,采用5000型旋转钻机施工大直径钻孔桩基础(直径为4.0m和4.5m),桥塔墩承台采用防撞吊箱围堰施工;通航孔桥桥塔均采用爬模施工,且爬模作业平台采用包围结构;通航孔桥采用浮吊及架梁吊机双悬臂法进行大节段钢桁梁施工;非通航孔桥的简支钢桁梁采用工厂整孔制造、浮吊整孔架设的施工方案;混凝土箱梁采用移动模架法施工。  相似文献   

10.
川南城际铁路临港长江公铁两用大桥主桥为主跨522m的公路与高铁共建平层斜拉桥,3号主墩采用66根2.5m钻孔桩基础,承台为矩形,尺寸67.0m×35.75m×7.0m。大桥3号主墩基础位于长江江心,地质条件复杂,岩面起伏变化差异大,采用哑铃形钢-混组合结构围堰(由下部混凝土咬合桩、中部冠梁、上部双壁钢围堰组成)方案施工。主墩基础施工期间,咬合桩采用旋挖钻机成孔,将咬合桩打入底部基层以下4m,同时在加工厂内进行双壁钢围堰水平分块、竖向分节制作;咬合桩施工后进行冠梁施工;最后通过预埋板和剪力钢筋将下部咬合桩和上部双壁钢围堰连接成整体,形成组合围堰。为保证施工期间的组合围堰安全,对其应力、变形进行了现场监测。结果表明:组合围堰结构状态表现良好,满足现场施工安全要求。  相似文献   

11.
鄂黄长江公路大桥主5号墩基础由19根φ3.0 m钻孔灌注桩,直径为30 m,厚度为6 m的承台组成,经方案评审比较,由原钢围堰方案优化为钢套箱施工,大大节约了工期及造价.  相似文献   

12.
武汉鹦鹉洲长江大桥主桥为(200+850+850+200)m三塔钢-混结合梁悬索桥,该桥中塔墩基础采用39根直径2.8m钻孔灌注桩,承台为圆端矩形,长70m、宽34m、高6.5m,埋置于河床覆盖层中。中塔墩基础采用双壁钢套箱围堰和"先围堰、后平台"的总体施工方案。在围堰浮运定位前,先在河床面铺设软体排进行主动防护,以减少基础施工对河床的冲刷;底节围堰在岸上制造,采用气囊法下河,先转向后直线下水,利用"前后定位船+重锚"系统定位,通过向井壁注水快速着床,围堰吸泥下沉到位后,搭建施工平台进行钻孔桩施工;最后进行围堰清基、封底,分2层按大体积混凝土工艺进行承台施工。  相似文献   

13.
武穴长江公路大桥主桥为(80+290+808+3×75)m双塔双索面单侧混合梁斜拉桥,15号桥墩基础采用哑铃型双壁钢套箱围堰施工,围堰长62.4m、宽32.4m、高31.15m。围堰高度方向分为底节24m和顶节7.15m,底节钢围堰在船厂整体加工后利用53只气囊辅助下水,采用3艘拖轮浮运至桥位并顶推至施工平台及支栈桥钢管桩上的橡胶护舷;利用平台及栈桥上6台卷扬机拉紧钢围堰进行初定位,然后向侧方和后方抛设4条锚缆进行精定位,插打12根钢护筒完成最终定位;在钢护筒上设置提吊系统整体起吊钢围堰至水面以上,割除助浮舱后灌水下放,待围堰着床后接高顶节7.15m围堰并吸泥下沉至设计标高。  相似文献   

14.
新白沙沱长江大桥主桥为(81+162+432+162+81)m钢桁梁斜拉桥,3号主墩基础为36根3.2m钻孔桩,承台尺寸为67.4m×31.3m×6m。综合考虑多种因素,3号主墩基础施工采用"水下控制爆破+多功能平台+双壁钢套箱围堰"的方案,水下爆破与多功能平台拼装同步作业,钻孔桩施工与双壁钢套箱围堰拼装双层作业、同步施工。采用乳化炸药进行水下爆破;多功能平台整体浮运,利用多点同步提升技术提升到位后,与渡洪桩共同形成钻孔平台;采用振动打桩机插打钢护筒;采用清水气举反循环成孔工艺施工钻孔桩;围堰拼装后,进行注水下沉、堵漏、抛填、封底施工,将下放平台改造成内支撑,最后进行抽水、承台施工。  相似文献   

15.
平潭海峡公铁两用大桥全长约16.34km,桥址处风大、海况条件恶劣、地质复杂。为提高海上作业工效,减少船机设备使用,大桥基础采用长栈桥辅助施工平台施工方案,将海上施工转化为栈桥及平台施工。针对栈桥设计难点,制定了栈桥荷载组合及设计原则,并根据水深及地质条件进行栈桥结构设计。栈桥全长7.49km,栈桥宽8.5m;水深≤35m,栈桥均采用钢管桩基础,35m水深≤45m,栈桥基础采用"导管架+支承桩"结构。水深≤18m,栈桥跨径9m+15m,上部结构采用贝雷梁,钢管桩直径1.2m;水深18m,栈桥跨径12m+32(28)m或12m+36m,上部结构采用大桥1号桁梁,钢管桩直径1.5,2,2.4m。为解决海洋环境下栈桥的耐久性问题,提出了预留钢管桩壁腐蚀裕量和管桩外表面涂装相结合的防腐设计。  相似文献   

16.
童庄河大桥主桥为(45+100+320+100+45)m双塔双索面混凝土梁斜拉桥,桥塔墩基础采用整体式矩形承台,其下布置11根2.8m、长63m的钻孔灌注桩。桥址河床陡峭,覆盖层松散、岩石破碎、多洞穴等,桩基施工期间水位变化达30m。为解决钢护筒精确着床、施工期间水位陡变的难题,采用"钢护筒+钻孔平台"相结合的平台系统进行桩基施工。施工平台系统由锚碇、拼装浮运系统、钢护筒、钻孔平台和导向架等组成。施工时,钻孔平台在驳船上拼装并浮运至墩位,每个平台利用2个10t岸锚和4个5t铁锚进行定位锚固,然后安装钢立柱定位导向架,插打钢护筒实现钻孔平台精确定位;利用8点提升方式进行钻孔平台提升,完成体系转换,形成固定钻孔平台;采用冲击反循环施工工艺完成钻孔施工。  相似文献   

17.
佛山市南海区东平水道特大桥主桥采用(35+260+51.5+66+62.5)m钢-混凝土混合主梁独塔斜拉桥,桥塔墩承台临近防洪大堤边坡,为保证承台施工过程中大堤的安全,对大堤防护进行方案设计。通过分析施工位置的地质条件、水位变化规律、大堤防护要求等,从安全性、施工便利性角度考虑,选用灌注桩+桩间高压旋喷桩止水的防护方案,防护桩直径1.25m,桩间距1.75m,横桥向设19根,顺桥向设7根,防护桩间采用2根0.6m高压旋喷桩形成止水帷幕,高压旋喷桩共50根。采用理正深基坑软件对防护桩桩身内力位移、地表沉降、嵌固稳定性、土的抗隆起稳定性进行计算,计算结果满足规范要求。工程实践证明,该方案确保了大堤和基坑的安全。  相似文献   

18.
上海市金山区紫金大桥为钢梁-钢拱下承式系杆拱桥,主跨跨径188 m。大桥主拱为提篮式钢箱拱,矢跨比为1/5,内倾角度12°,拱轴线为二次抛物线。主拱肋截面为矩形,宽2.2 m,高2.8 m。两片拱肋之间设置6道钢箱横向风撑,风撑外设椭圆形装饰结构。大桥主梁为采用新型钢-混凝土组合桥面板的钢梁,全宽40 m。吊杆采用高强平行钢丝束,纵向间距9 m。主拱与主梁连接处采用整体式节点板,拱肋水平推力通过整体节点板传递给钢主梁,大桥外部呈简支支撑体系。大桥主墩采用柱式墩,每个墩柱下设置一个矩形承台,横向两个承台之间通过系梁连接。基础采用钻孔灌注桩,每个承台下布置16根直径1.0 m的钻孔灌注桩,横向系梁下布置3根直径1.0 m的钻孔灌注桩。  相似文献   

19.
武汉鹦鹉洲长江大桥主桥为(200+2×850+200)m三塔悬索桥,该桥北锚碇为"带孔圆环+十字隔墙"重力式沉井基础,沉井外径66m,高43m;1号塔基础为44根φ2.0m钻孔灌注桩,2号塔基础为39根φ2.8m钻孔桩;3号塔基础为20根φ2.8m钻孔桩;南锚碇为"圆形嵌岩地下连续墙+内衬"结构形式,地下连续墙为钢筋混凝土结构,外径68m,壁厚1.5m。根据该桥基础特点,北锚碇沉井采用3轮接高、3次下沉施工;1号塔基础采用筑岛、双排防护桩施工方案;2号塔基础采用先钢围堰后平台的施工方案,钢围堰采用气囊法整体下河;3号塔基础采用先平台后围堰、单排钻孔防护桩施工方案;南锚碇采用液压铣槽机配合冲击钻施工地下连续墙的施工方案。  相似文献   

20.
云南嵩昆高速公路项目海子口大桥横跨牛栏江,为实现两岸施工的高效管理与资源共享,海子口大桥处在牛栏江上设置钢栈桥。结合受控因素以及地形、地貌、地质、水文等情况,钢栈桥设置为1×30m跨径。本文依托云南嵩昆高速公路项目海子口大桥栈桥的设计计算与施工,总结一些大跨径钢栈桥设计要点与施工关键技术,为后续类似工程栈桥布置提供参考借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号