首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
在桥梁设计中,伸缩装置的设计是否得当,对桥梁后期使用及运营影响较大.介绍了桥梁伸缩装置的功能及分类,分析了影响伸缩装置伸缩量的基本因素,给出了伸缩量的计算方法,并且提出了设计伸缩装置应考虑的因素.  相似文献   

2.
公路桥梁伸缩装置,在桥梁结构中直接承受车轮荷载的反复冲击作用,易受破坏且难以修复。对桥梁伸缩装置破坏的成因进行分析,指出桥梁伸缩装置伸缩量的确定与施工是防治桥梁伸缩缝病害的关键,并介绍了伸缩量的计算方法和施工要点,以确保桥梁伸缩缝的质量。  相似文献   

3.
桥梁伸缩装置影响桥梁结构使用寿命和行车安全。该文以某大桥伸缩装置破损更换选型为例,应用Midas有限元软件建立桥梁模型,模拟计算温度变化、混凝土收缩徐变、汽车制动力、车辆荷载、纵向坡度等因素对梁端位移影响。结果表明:伸缩量可由体系温差、混凝土收缩徐变和汽车制动力三者引起的梁端位移之和乘以相应的增大系数求得;汽车制动力主要影响主梁顺桥向位移,按规范计算的伸缩量仅是板式橡胶支座剪切变形引起的梁端位移,应加上桥墩弯曲变形引起的梁端位移,特别是桥墩较高,刚度比较小的桥梁;对运营10年以上桥梁,可不考虑混凝土收缩徐变对伸缩装置的影响。理论计算和有限元分析表明:该桥引桥建成时安装美国万宝系列SD-160型伸缩装置不合理,伸缩量应满足ΔL≥379.2mm;运营15年后,伸缩量应满足ΔL≥292.2mm,建议选择320型模数式伸缩装置。  相似文献   

4.
大位移模数式伸缩装置技术性能监测与分析   总被引:1,自引:0,他引:1  
近年来国内外很多大跨度桥梁上的大位移模数式伸缩装置发生工作状态异常,甚至出现伸缩装置的局部损坏。为掌握此类伸缩装置的实际工作行为,对一座大跨度悬索桥上的大位移模数式伸缩装置进行了连续十个月的技术性能监测,获得该桥伸缩装置的伸缩量累计值、伸缩量值、伸缩单元运动速度等参数。分析了该桥伸缩装置的实际工作特点并讨论了环境因素和使用条件对伸缩装置工作性能的影响。  相似文献   

5.
桥梁毛勒伸缩缝施工工艺探讨   总被引:2,自引:0,他引:2  
胡晓敏  赵阳 《交通科技》2005,(5):59-60,63
介绍桥梁伸缩装置伸缩量的简易计算方法和安装定位值的确定,同时对毛勒伸缩缝在施工中的细部控制进行介绍.  相似文献   

6.
桥梁伸缩型式必须根据所安装伸缩装置的道路性质,桥梁类型,需要的伸缩量,综合伸缩装置整体的耐久性,平整性,排水性和防止性,施工性,维修性和经济性等,选择恰当型式的伸缩装置。TST碎石弹性伸缩是一种新型的伸缩装置,以其特有的优点正在被直来越多地应用于桥梁建设中。  相似文献   

7.
获得国家专利的“LB多向变位桥梁伸缩装置”技术日前在九江长江大桥公路桥上得到应用,这是目前伸缩量800毫米以上“特大变位量梳形桥梁伸缩装置”技术在国内公路桥上首次应用。在九江长江大桥公路桥施工现场,伸缩量为815毫米、855毫米和935毫米三条最大的梳形伸缩装置经安装、改造后,其伸缩装置抗震性好、车辆过渡平稳、能解决翘凿、断凿等问题。  相似文献   

8.
《公路》1995,(6)
珠海大桥的桥面伸缩装置,采用了当时国内堪称先进的BF系列橡胶伸缩装置。鉴于设计时考虑到气温变化、混凝土的收缩徐变、车辆轮压等因素,选用了伸缩量分别为120、160、200mm的装置共370延米。BF装置以独特的结构,改变了前一代板式橡胶伸缩缝仅靠橡胶剪切变形来实现桥面的水平变位,而是由上部橡胶伸缩缝板和下部梳齿形钢板组合成一种刚柔相济的联动结构。其特点:①橡胶伸缩缝板断面设计呈二组W形状,当桥梁伸缩变位时,利用橡胶的高弹性及W形状,能象弹簧一样伸长或压缩,以适应桥端的位移,其水平抗力仅是板式橡胶伸缩缝的l’3,因…  相似文献   

9.
J-75桥梁伸缩装置是交通部“七五”科研项目,经过设计、试验、试制及一年多的实桥应用,证明已取得成功,1992年11月6日在西安通过了交通部鉴定。该装置具有使用寿命长,伸缩量大,防水性好,行车平稳,安装方便,维护简单等特点。目前已应用于10余座大桥,其使用性能良好,明显地优于国内现有各种桥梁伸缩装置;与国外同类产品比较,综合技术性能和指标也达到当前的先进水平。  相似文献   

10.
九江长江大桥公路桥全长4480米,1993年建成通车。2003年,公路桥进行全面改造,正桥桥面5条伸缩缝安装了“三防”式伸缩装置。随着车流量日益增多,装载量加大,大桥中最大的三条伸缩装置出现翘凿、断凿等损坏现象,严重影响大桥安全。为此,大桥管理局决定对伸缩装置进行改造。研制“LB多向变位桥梁伸缩装置。”的路宝交通科技有限公司总经理涂斌告诉记者:“目前研制这种装置在国内尚属首家,伸缩量800毫米以上在长江大桥上使用,全国还是第一次”。  相似文献   

11.
基于新规范的预应力混凝土桥梁伸缩缝问题刍议   总被引:2,自引:0,他引:2  
该文结合新颁布的桥梁规范,介绍了影响伸缩量的常见因素和计算公式,并针对工程中常用的结构形式的伸缩量进行了计算分析,提出了预应力混凝土梁桥伸缩量的简化计算方法。  相似文献   

12.
城市立交桥在分合流位置常通过采用异形钢结构桥梁,并设置伸缩缝的形式适应桥面宽度的改变。但对于日益增多的城市立交桥改扩建工程,分合流位置有时需要设置大型门架横梁跨越地下管网或构筑物,此时在该处设置伸缩缝会因主梁与横梁高度的叠加,导致结构高度过大。为研究该情况下的桥梁结构选型问题,提出在分合流位置采用纵横梁耦合的连续体系方案,借助有限元计算方法,对该类桥型的结构可行性进行分析,并讨论了支座横向偏心、门架横梁弯曲刚度对内力状态、整体刚度及支反力的影响,以期探明该类桥型的受力特点及关键力学参数。结果表明:恒载状态下的支反力均匀程度可作为控制性指标,检验该类桥型的受力合理性;适当增大门架横梁的弯曲刚度,可有效控制结构的竖向及扭转变形。  相似文献   

13.
当桥梁伸缩缝损坏后,伸缩缝连接处会发生倾斜和路面破损,导致车辆经过时发生跳车、噪音等现象,令车上人员感到不适,甚至诱发安全事故。伸缩缝损坏给道路桥梁的正常运行造成负面影响,选择合适伸缩缝是延长伸缩缝寿命的主要方法之一。以林海公路(外环立交—上南路)改建工程为研究载体,选用某新型桥梁降噪减振橡胶伸缩装置并试验其施工工艺,包括切削、安装、焊缝、混凝土施工、养护等工序,以期达到延长伸缩缝服役寿命,降低车辆通行噪音,避免桥头跳车现象。  相似文献   

14.
武汉天兴洲公铁两用长江大桥关键技术研究   总被引:7,自引:4,他引:7  
天兴洲公铁两用长江大桥是北京至广州客运专线在武汉跨越长江的重要桥梁,其主桥为主跨504 m的双塔三索面三主桁斜拉桥,铁路、公路分上下2层布置。重点介绍武汉天兴洲公铁两用长江大桥结构体系、主桁结构、基础选型和基础施工等关键技术及研究成果。  相似文献   

15.
基于国家对防治交通干线环境噪声污染、大力倡导绿色交通的要求,同时考虑到现阶段各类伸缩装置的降噪功能和效果均有所欠缺,研发了一种新型的性能优良的降噪减振伸缩装置以减少公路、城市桥梁工程噪声对环境污染.对伸缩装置的常规整体性能、橡胶性能、所选用的高阻尼减振橡胶支座、伸缩装置的降噪以及减振性能均进行了相应的试验测试,测试结果表明伸缩装置具有良好的整体性能、耐久性以及减震降噪效果.  相似文献   

16.
上海S3公路在大治河处采用“主线高速系统+地面系统”的敷设形式,为减少用地面积,降低工程投资,大治河桥设计采用一体化建设、一跨过河的双层简支桁架桥。该桥跨径109m,采用双层桥面布置,桥宽33.7m。上部结构横桥向设置4榀桁架,采用三角桁,上、下弦杆及腹杆均采用箱型截面,桁架间采用工字型钢横梁联系,上、下层桥面系采用正交异性钢桥面板;下部结构采用2个分离式的双层门式框架,基础采用钻孔灌注桩;支承体系采用球型钢支座并联叠层橡胶恢复力元件组成的新型组合型减隔震体系;桥面铺装采用浇筑式沥青混凝土,钢结构防腐涂装采用长效型配套体系。采用MIDAS Civil建立空间有限元模型进行计算分析,结果表明:该桥受力良好,安全可靠,满足规范要求。该桥每平米桥面用钢指标控制在0.469t/ m2,其用钢指标低于同类型桥梁。该桥的设计经验可为同类工程提供参考。  相似文献   

17.
人行索桥合理结构形式研究   总被引:1,自引:0,他引:1  
为得到适合山区人行索桥的合理结构形式,通过对目前大部分山区人行索桥安全隐患及事故的调查,并对悬索桥和索道桥进行理论计算和对比分析,提出索桁结构概念。索桁桥结构由上主缆、下桥面缆索及吊杆组成,通过在空载下张拉下桥面索形成一个类似桁架结构的空间体系。通过对索桁桥、悬索桥、索道桥3种结构形式的对比分析可知,在山区修建人行索桥采用索桁结构体系是比较合理的,索桁桥可以降低活载挠度,节省工程造价。  相似文献   

18.
基于国家对防治交通干线环境噪声污染、大力倡导绿色交通的要求,同时考虑到现阶段各类伸缩装置的降噪功能和效果均有所欠缺,研发了一种新型的性能优良的降噪减振伸缩装置以减少公路、城市桥梁工程噪声对环境污染。对伸缩装置的承载能力极限状态、正常使用极限状态及疲劳性能有限元模拟分析,分析结果满足规范要求。  相似文献   

19.
非对称混合梁斜拉桥合理成桥状态及静力特性分析   总被引:1,自引:0,他引:1  
贺鹏  丁望星 《桥梁建设》2012,42(1):54-59
荆岳长江公路大桥主桥为(100+298) m+816 m+(80+2×75)m双塔非对称混合梁斜拉桥.在分析该桥主桥静力平衡特性的基础上,总结该类桥梁合理成桥状态的确定原则,并以此为指导采用RM2006空间杆系程序对该桥主桥进行结构总体静力分析.分析结果表明:该桥主梁钢箱梁段运营阶段上、下缘应力均以压应力控制,最大压应力分别为-135.40 MPa和-134.88MPa,控制值基本相当;混凝土梁段上缘压应力最大为-17.32 MPa,无拉应力出现;桥塔最大压应力为-15.56 MPa,均满足规范要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号