首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
武汉青山长江公路大桥主桥为主跨938m的全飘浮体系斜拉桥,桥塔高度超过270m。为了检验桥塔在施工阶段的抗风安全性,采用ANSYS软件分析该桥北塔结构动力特性,并制作缩尺比为1∶100的自立北塔气动弹性模型进行风洞试验,研究桥塔自立状态在均匀流场、紊流场中的涡振和驰振响应,以及在紊流场中的抖振响应。结果表明:桥塔自立状态在均匀流场中检验风速范围内仅发生了微小的涡振,未发生驰振现象;在紊流场中检验风速范围内桥塔未发生明显的涡振、驰振等现象;在紊流场中施工阶段设计基准风速作用下,桥塔顺桥向抖振位移远大于横桥向抖振位移,当风向角为15°及60°~75°时,桥塔塔顶顺桥向抖振位移均方根最大,为62~67mm,不影响桥塔施工安全。  相似文献   

2.
高能祥 《城市道桥与防洪》2020,(5):260-265,M0026
使用Ansys建立了某大跨度斜拉桥有限元模型,并对该斜拉桥进行动力特征分析,得到了该桥固有频率和振型;利用谐波合成法编制Matlab程序,合成了该斜拉桥的三维空间脉动风场,得到了该桥主梁和桥塔各离散点的脉动风速时程;利用各离散点的风速时程转化为有限元模型中各节点抖振力时程,并对该桥进行了抖振时域分析,得到了该桥在风荷载作用下的动力响应结果。  相似文献   

3.
为了探讨悬索桥超高桥塔的刚度和风致响应问题,围绕顺桥向A字形布置混凝土桥塔(不同底部张开量)和顺桥向独柱形布置混凝土桥塔(不同塔柱截面)展开研究。利用有限元分析软件建立了2种类型桥塔的裸塔自立状态有限元模型,计算对比了桥塔刚度以及静风响应,同时采用时域分析方法计算桥塔的抖振响应,对比分析了在桥塔横向构造形式一定的前提下,不同类型方案对超高桥塔刚度和风致响应的影响。分析结果表明,顺桥向A字形桥塔的整体刚度较独柱形桥塔大;在顺桥向静风作用下,独柱形桥塔塔顶位移比A字形桥塔大得多;在顺桥向脉动风作用下,独柱形桥塔塔顶抖振位移响应的脉动程度远大于A字形桥塔。  相似文献   

4.
斜拉桥主塔施工过程风致抖振时域分析及安全性评定   总被引:2,自引:0,他引:2  
对杭州湾大桥南通航孔斜拉桥进行桥塔施工架设期间的抗风分析。根据桥塔施工进度确立中塔柱合拢前及桥塔自立状态为抗风控制状态,针对2种施工控制状态建立有限元模型,分别进行了抖振时域分析及施工阶段全过程静力分析,并对桥塔在施工过程中结构和施工人员安全进行了评价。结果表明:施工阶段设计风荷载作用下,2种抗风控制状态桥塔控制截面拉应力都不大,结构不会出现损伤;但塔柱顶部抖振振幅及狄克曼指标都较大。  相似文献   

5.
小沙湾黄河特大桥地处峡管效应较大的风口处,是一座预应力混凝土高墩大跨连续刚构桥.以ANSYS有限元软件为分析平台,建立了该桥的成桥阶段和最大悬臂施工阶段的有限元模型.采用FORTRAN语言编制了基于Geodatis改进型谱表示法的脉动风速模拟程序.根据Dav-enpon准定常理论由模拟风速求得作用于有限元模型节点上的时程抖振力,进而对成桥阶段和最大悬臂施工阶段的风致抖振响应进行时程分析.最后对静阵风荷载和脉动风荷载作用下的结构响应值进行了比较,得到脉动增大系数.  相似文献   

6.
笔者提出一种改进的谐波合成法,利用该方法仿真得到桥位处的脉动风时程。基于Miyata T准定常气动力模型,在Ansys中引入自激力的影响,对北山特大桥最大双悬臂施工阶段进行风致抖振时域分析,侧重研究结构线性与结构非线性对高墩大跨连续刚构桥风致抖振动力响应的影响。研究结果表明:考虑几何非线性的影响,结构抖振响应略大于线性情况下的响应;在设计基准风速下高墩大跨连续刚构桥表现出一定的几何非线性行为;将脉动风荷载作用下的结构响应值和静、阵风荷载作用结果比较,得到脉动增大系数。  相似文献   

7.
为评估施工过程中带吊机状态时桥塔的风振舒适性,对某桥一高164.4 m的独柱式钢桥塔与吊机结构开展了气动弹性模型风洞试验,研究桥塔封顶(T1状态)以及最后一道扶墙安装前(T2状态)2种施工状态下的桥塔和吊机的抖振位移响应;采用加速度均方根作为结构风振舒适性评价指标,通过比较多种舒适性标准得出高、中、低3种评价等级,对带吊机桥塔结构风振舒适性进行评价,并结合工程规定进行验证。结果表明:风偏角对带吊机钢桥塔结构抖振响应有显著影响,其中15°风偏角下抖振响应最大;风速与带吊机钢桥塔结构顶部加速度均方根间存在较显著的线性正相关特性,可以作为风振舒适性的简易评价指标;2种施工状态下桥塔塔顶风振舒适性基本一致,T2状态下吊机顶部风振舒适性低于T1状态;3种评价标准中基于非常烦扰的中评价等级与工程规定较相符。  相似文献   

8.
斜拉桥在最大双悬臂施工状态时,结构的刚度和阻尼都很低,在紊流风的作用下悬臂端会产生较大的抖振响应。本文采用耦合抖振响应分析的有限元CQC方法,以某斜拉桥为例计算了最大双悬臂施工阶段采用临时风缆与临时墩两种控制措施的抑振效果,并详细探讨了不同风缆布置方案与不同临时墩布置位置对抖振控制效果的影响。计算结果表明:临时风缆的抑振效果对风缆与水平方向的夹角并不敏感;风缆交叉布置会使主梁竖向和横向抑振效果都有所减弱;当风缆中的应力达到一定程度后,增大应力并不能有效的提高抑振效果;当风缆应力一定,增大风缆面积能显著提高抖振抑制效果,但也会使主梁根部横桥向弯矩增大,对塔梁临时固结处产生不利影响;临时墩的减振效率大大优于临时风缆;临时墩的布置位置不宜离桥塔太近,且宜在1/2悬臂长度外合理地质条件处布置。  相似文献   

9.
施工阶段的钢桥塔属于典型的高柔结构,由于缺乏缆索的支撑作用,其低刚度可能会引起过大的结构位移响应。针对带塔吊钢桥塔联合体系静风荷载及响应,比较了《公路桥梁抗风设计规范》、《起重机设计规范》所提供的计算方法和计算流体力学(CFD)虚拟风洞技术的计算结果。通过对比可知,与CFD数值的计算结果相比,按照规范计算的联合体系部分位移响应极值偏于不安全;布置在钢桥塔顺桥向方向的塔吊,对桥塔顺桥向风荷载有一定的放大影响;根据CFD计算结果,可以得出风向对联合体系风荷载存在明显的影响。  相似文献   

10.
当大跨连续刚构桥由于基频降至自然界脉动风的卓越频率区时,其风致抖振响应不可忽视。以十堰市将军河汉江大桥为工程背景,首先基于改进的Iwatani线性回归滤波器法,模拟桥址处的脉动风场;之后,采用Davenport准定常抖振力模型,分析该桥最大悬臂施工阶段的风致抖振响应,并与该桥的静阵风响应值进行对比分析;最后,利用抖振分析结果对该桥施工人员的安全性和舒适性进行预评。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号