首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
<正>汽车传动轴机件的损坏、磨损、变形以及失去动平衡,都会造成汽车在行驶中产生异响和振动,严重时会导致相关部件的损坏。汽车行驶中,在起步或急加速时发出"格登"的声响,而且明显表现出机件松旷的感觉,如果不是驱动桥传动齿轮松旷则显然是传动轴机件松旷。松旷的部位不外乎是万向节十字轴承或钢碗与凸缘叉,伸缩套的花键轴与花键套。一般来讲,十字轴轴径与轴  相似文献   

2.
某货车驾驶室疲劳载荷激励输入位置位于驾驶室与悬置连接处,在进行整车强化道路耐久试验时无法安装设备直接采集。为获取较为准确的驾驶室疲劳寿命分析载荷谱,对强化耐久路面下整车加速度响应信号进行虚拟迭代。虚拟迭代时需调用整车多体动力学模型,为提高整车模型精度,基于Craig-Bampton综合模态理论生成柔性体车架,建立刚柔耦合的整车多体动力学模型。将Femfat-lab与ADAMS/Car进行联合仿真计算,以白噪声为初始输入,求解刚柔耦合整车多体动力学模型的非线性传递函数,基于循环迭代原理,进行各种典型强化路况下驾驶室悬置附近加速度响应信号的虚拟迭代。利用时域信号对比法及损伤阈值法作为迭代收敛判据,获得满足精度需求的位移驱动信号。将位移驱动信号导入到ADAMS/Car中,对整车多体动力学模型进行驱动仿真,提取驾驶室疲劳分析所需激励载荷谱,将虚拟迭代求得的载荷谱用于疲劳寿命分析所得结果与驾驶室疲劳强化台架试验结果进行对比。研究结果表明:出现疲劳破坏的部位相同度达75%,疲劳寿命误差在20%左右,表明虚拟迭代过程中基于柔性体车架建立的刚柔耦合多体动力学模型的仿真计算,可获得较高精度的迭代结果;以位移谱驱动整车多体动力学模型进行仿真能够有效避免六分力直接驱动时模型翻转等不稳定现象,并且整车模型仿真加速度响应结果与实测相应位置加速度响应吻合度较高;相比于传统的疲劳分析载荷获取方法,虚拟迭代技术可以在较低试验成本的情况下获取较高精度的载荷谱,并能够提取由于连接位置导致的无法直接进行载荷测量部位的疲劳分析载荷。  相似文献   

3.
对聚苯乙烯泡沫材料进行了试验研究,结合试验结果对缓冲泡沫进行模态分析并生成了柔性体文件。在ADAMS中创建了基于柔性包装的整车运输刚柔耦合模型,并对B级路面激励下的货物与车辆的振动响应进行了分析。  相似文献   

4.
以某商用车驱动桥桥壳为研究对象,建立该结构的体单元有限元模型;在此基础上对驱动桥桥壳结构的静力、模态性能进行分析与研究,得出应力分布情况和前6阶模态下的固有频率及振型,从而验证了设计的合理性;以该驱动桥桥壳的总体积为目标,以强度性能为约束条件进行结构优化。验证结果表明,优化后的桥壳不仅实现了轻量化,而且应力分布更均匀、结构更合理。  相似文献   

5.
传动轴是商用车动力系统关键传动部件,对整车NVH性能有重要影响,文章针对某商用车传动轴进行了模态CAE和试验研究,C AE分析和试验结果表明,此商用车传动轴NVH模态性能满足目标。  相似文献   

6.
以某重型载货汽车为研究对象,提出一种基于车轴位移响应的耐久性虚拟试验方法.该方法首先采集车轴位置的加速度响应;建立基于车轴位移响应驱动的整车多体动力学刚柔耦合模型;接着基于上述试验和刚柔耦合模型复现整车实际道路的载荷历程,预测整车及其关键零部件的疲劳寿命.最后,对其前悬架左减振器支架进行的分析,验证了所提出的试验方法的有效性.  相似文献   

7.
以国内某新型轻客驱动桥的NVH性能为研究对象,根据整车噪声测试结果,结合驱动桥的噪声测量数据,并运用ABAQUS软件进行模态有限元分析。针对主减齿轮啮合噪声和驱动桥的整车共振提出相应改进措施,并进行试验验证。试验结果表明,理论分析计算和改进措施有效,为后期驱动桥的设计和改进提供了参考。  相似文献   

8.
运用有限元和多体动力学方法,对车辆前、后悬架和车架进行了柔性化处理,分别建立某越野车的刚体、刚柔耦合模型以及仿真路面,进行了整车平顺性仿真和实车道路试验。结果表明,在脉冲路面,刚柔耦合模型中悬架、车架柔性体的变形会导致振动加速度曲线两波峰间的波动变化减小,而刚体模型衰减幅度较大;在C级随机路面,刚柔耦合模型的加权加速度均方根值大于刚体模型数值,更接近道路试验值。  相似文献   

9.
在动力学理论分析的基础上,对某电动汽车车架动态特性进行分析与研究:首先利用CATIA建立其三维模型;然后导入ANSYS中建立以体单元为基本单元的车架有限元分析模型;最后利用ANSYS软件计算出该车架的模态特性,得到了该车架在自由状态下的12阶固有频率和固有振型。为车架结构的动态响应提供了重要的模态参数,同时也为车架结构的优化设计提供了理论依据。  相似文献   

10.
方明霞  陈江红 《汽车工程》2005,27(5):598-602
采用具有线性和非线性连接子结构的自由界面模态综合法,建立整车系统声固耦合非线性动力学模型。用该模型对发动机激励产生的车内噪声进行数值仿真,并通过试验对仿真结果进行验证。  相似文献   

11.
在动力学理论分析的基础上,对某电动汽车车架动态特性进行分析与研究:首先利用CATIA建立其三维模型:然后导入ANSYS中建立以体单元为基本单元的车架有限元分析模型;最后利用ANSYS软件计算出该车架的模态特性,得到了该车架在自由状态下的12阶固有频率和固有振型。为车架结构的动态响应提供了重要的模态参数,同时也为车架结构的优化设计提供了理论依据。  相似文献   

12.
将经过自由模态试验验证的排气系统有限元模型导入ADAMS虚拟样机平台,建立了更接近实际结构的动力总成-排气系统刚柔耦合仿真模型。在汽车极限载荷工况下计算了排气系统上4个关注点的位移,将刚柔耦合仿真方法与传统有限元方法的仿真结果相比较,结果显示,两种方法的预测一致性较好,间接验证了刚柔耦合仿真方法的准确性。  相似文献   

13.
1 概述 传动轴总成是介于变速器与驱动桥之间的一种动力传递部件,其主要作用是把来自发动机、变速器的转矩及转速传递给驱动桥,同时调整因路面不平、车轮上下跳动等因素引起的传递距离和角度的变化.在整车匹配中,应根据发动机、变速器及驱动桥的配置,来适当选择传动轴的规格型号,若规格型号选择不当,会造成材料浪费,或引发传动轴的批量损坏故障,对公司品牌形象造成负面影响.  相似文献   

14.
商用车传动轴设计由于与整车轴距、发动机尺寸与定位、变速器箱长、驱动桥型号等参数有关,整车总布置如果调整一个相关参数,传动轴的长度和夹角就会变化,利用CATIA软件知识工程模块创建传动轴骨架模型可以非常快捷的进行传动轴的设计和校核。  相似文献   

15.
为满足驱动桥壳越来越高的性能需求,以TY-1型商用驱动桥壳为研究对象,通过HyperMesh软件建立以3D实体单元为基本单元的有限元模型,在此基础上对驱动桥壳结构的静力、模态性能进行分析,得出应力、应变分布情况和前5阶模态下的固有频率及振型。分析结果表明,桥壳强度和刚度基本满足设计要求,且不会与地面激励产生共振。对驱动桥壳进行疲劳寿命分析,得到疲劳寿命云图,结果表明桥壳疲劳强度满足要求,进一步验证了设计的合理性。  相似文献   

16.
高速旋转状态下汽车弧齿锥齿轮的动力学模态分析   总被引:2,自引:0,他引:2  
在Pro/E和ANSYS软件环境下,分别建立了汽车主减速器弧齿锥齿轮的三维几何模型和动力学模态分析有限元模型,进而对静止状态和高速旋转状态下的齿轮进行了模态分析,得到了各阶固有频率和振型.结果表明,在高速旋转状态下,齿轮由于离心弹性变形而产生"离心刚化效应",从而改变了齿轮的模态特性:随着转速的增加,轮齿离心弹性变形量和各阶固有频率均增大,且某些振型也与静止状态下的不同.  相似文献   

17.
孙蓓蓓  许志华  孙庆鸿 《汽车工程》2006,28(10):922-925,955
以AD250铰接式自卸车为应用实例,在建立整车刚柔耦合多体动力学模型的基础上,提出把悬架传力构件作为柔性体置于整车模型中,同时采用模态综合法计算悬架的动应力。指出了AD250铰接式自卸车悬架各构件的应力最大部位及发生时刻并评价了其动强度,为进一步的结构优化和疲劳分析奠定了基础。  相似文献   

18.
基于刚柔耦合的盘式制动器振动仿真分析   总被引:1,自引:0,他引:1  
综合考虑摩擦特征和模态耦合,建立了基于刚柔耦合的矿用自卸车盘式制动器模型,以对其振动进行仿真分析.首次通过直接设置柔性体问的接触,模拟制动器典型制动工况.对其进行瞬态动力学分析.研究结果表明,部件间摩擦因数、部件阻尼对盘式制动器的振动有很大影响;合适的部件阻尼可有效提高制动系统的稳定性.  相似文献   

19.
本文主要针对某轻型客车传动轴结构对整车NVH的影响进行分析研究,通过对传动轴长度等不够结构的匹配,并运用CAE对传动轴模态进行分析,通过改变传动轴模态以提升整车NVH性能。接合CAE分析对整车的对比试验检测,对传动轴结构对整车NVH的敏感度进行分析研究,最终确认满足NVH性能要求的传动轴结构及布置。  相似文献   

20.
对汽车通过噪声源进行论述,利用对某载货汽车通过噪声的研究阐述传动系统振动对通过噪声的影响。利用摸底试验、传动轴模态计算和模态试验等方法,确定试验样车通过噪声大的原因为变速器副箱齿轮啮合激励为激振源,且3根传动轴耦合共振使噪声扩大。结合噪声原因分析和方案可行性分析,提出采用改变传动轴空腔结构以消除传动轴空腔扩音的方案,从而使试验样车的通过噪声显著降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号