首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
建立某电动客车整车骨架有限元模型,进行车身结构的弯曲刚度和扭转刚度有限元计算;然后进行车身弯曲刚度、扭转刚度及质量对构件厚度的灵敏度分析,依据灵敏度分析结果,优化车身构件厚度,提高车身骨架结构的扭转刚度和弯曲刚度,同时质量不增加。  相似文献   

2.
建立了某客车车架的有限元模型,分析了车架的弯曲和扭转刚度。对车架各构件进行了灵敏度分析,取质量灵敏度与刚度灵敏度之比较大的构件厚度作为设计变量,以质量最小作为目标函数,以位移为约束条件,对车架进行了轻量化设计。优化结果表明,基于灵敏度分析的优化设计方法可行,轻量化效果明显。  相似文献   

3.
运用hypermesh软件建立某型轻卡车架有限元模型,利用模态试验验证了有限元模型的准确性。分析了车架在弯曲和扭转工况下的等效应力、变形及模态频率,计算了该模型的车架质量和扭转工况下最大应力灵敏度,并提出相对灵敏度绝对值较大的组件的厚度作为轻量化设计变量,在保证一定的强度、刚度条件下,按照高刚度、轻质量的要求对车架组件进行厚度修改,实现车架轻量化。  相似文献   

4.
全承载式大客车车身结构多目标优化   总被引:1,自引:0,他引:1  
刘江  桂良进  王青春  范子杰 《汽车工程》2008,30(2):170-173,150
建立了全承载式大客车车身骨架的有限元模型,对车身骨架结构进行了振动模态和静力学分析.然后对车身骨架结构进行设计参数灵敏度分析,得出车身骨架扭转刚度和一阶扭转频率对各部件设计参数的灵敏度.在此基础上,以车身骨架杆件厚度为设计变量,通过两阶段结构优化设计,在整车骨架质量增加很少的条件下,提高了整车结构的扭转刚度和一阶扭转频率值;同时,一轮悬空工况下的整车结构应力峰值明显下降,应力分布更加均匀,整车骨架结构设计更为合理.  相似文献   

5.
为了在满足性能要求的前提下有效降低纯电动大客车车身骨架结构质量,减少客车行驶阻力,节省电耗、提高续航里程,进而提升整车的性能品质和市场竞争力,对客车车身骨架进行了轻量化多目标优化设计。建立了某纯电动大客车车身骨架结构的有限元模型,以客车车身骨架总柔度最小为目标,设计区域的体积为约束条件,设计区域各单元的相对密度作为设计变量,对车身结构的车顶骨架、车底骨架和左右侧围骨架进行了拓扑优化设计,并根据拓扑优化结果提取出了大客车车身骨架的拓扑结构。通过相对灵敏度分析,从21个设计变量中确定出13个对车身骨架性能不敏感但对减重较敏感的设计变量,然后以车身骨架质量M最小、一阶扭转频率Ft和弯曲频率Fb最大作为目标,以弯曲和扭转工况下车身骨架结构的静柔度Cb和Ct小于给定值作为约束条件,以相对灵敏度分析确定出的13个壁厚参数作为设计变量,用尺寸优化方法和多目标遗传算法(MOGA)对大客车车身骨架结构进行了轻量化优化设计,并在4种典型工况下对优化前后的大客车车身骨架结构的静、动态性能进行了分析对比。结果表明:所建立的纯电动大客车车身骨架拓扑优化方法、相对灵敏度分析方法与轻量化多目标优化设计方法有效,在满足大客车车身骨架结构性能要求的前提下,实现减重303kg,减重率为11%,轻量化效果显著。  相似文献   

6.
以某客车车架为研究对象,进行模态分析并与试验模态比较,验证了有限元模型的准确性;进行刚度分析,验证了该车架弯曲刚度和扭转刚度符合设计要求。在此基础上,考虑车架结构件板厚对其低阶模态参数及质量的影响,对主要部件的板厚进行频率灵敏度和质量灵敏度分析。引入相对灵敏度,提取相对灵敏度较大的部件以板厚为设计变量进行优化分析。优化结果表明:车架固有频率降低,同时车架的质量也减少,达到了轻量化的目的。  相似文献   

7.
运用有限元分析理论,在Hypermesh有限元软件中建立纯电动客车车身骨架结构整车有限元模型,进行水平弯曲和极限扭转两种典型工况下的静力学分析,通过分析发现车身结构强度和刚度都有过盈。提出基于灵敏度分析的方法对该客车车身结构进行结构优化,结果表明,车身结构质量减轻95 kg,各项性能变化不大且仍满足要求。  相似文献   

8.
运用Hyper Mesh软件建立某商用车车架的有限元模型,通过模态分析得到车架的动态特性,并结合模态试验验证了有限元模型的准确性。在此基础上对车架进行了弯曲刚度和扭转刚度分析。对车架部件进行了质量灵敏度、1阶固有频率灵敏度和柔度灵敏度分析,基于相对灵敏度分析结果确定车架的设计变量,以车架总质量最小化为目标,以车架1阶固有频率、弯曲刚度和扭转刚度不下降为约束条件,建立车架尺寸优化模型。优化结果表明:优化后的车架总质量减轻6.14%,同时第1阶固有频率提高6.09%,弯曲刚度提升1.21%,扭转刚度提升0.58%,验证了该车架轻量化思路的可行性。  相似文献   

9.
从越野汽车大比例扭转使用环境出发,首先分析了整车、悬架、车架、车身扭转变形,继而从提高越野汽车越野行驶最大平均车速,保证乘员舒适性、通过性、可靠性、轻量化水平角度出发,探讨了悬架、车架、车身(车箱)扭转刚度的匹配思路和方法.  相似文献   

10.
文章主要介绍了一种白车身扭转刚度的板厚灵敏度分析的方法,用于分析白车身扭转刚度工况下整体扭转角相对零件单位厚度质量的变化量,即计算设计变量△d相对零件单位厚度质量△m的变化量,称为扭转角相对灵敏度,通过对相对灵敏度结果进行排序,结合实际工程约束条件,为提升扭转刚度性能或轻量化设计提供较合理的厚度分配方案。  相似文献   

11.
为了提高某轿车白车身弯扭刚度性能,文章采用全局灵敏度分析方法进行白车身结构优化设计。首先,分别建立白车身弯曲刚度及扭转刚度的有限元模型,进行结构性能的分析;然后,以车身部件的厚度作为分析参数,采用基于Sobol'法的全局灵敏度分析方法,获得各个部件对弯扭刚度的综合贡献度;最后,根据部件的敏感程度进行结构优化设计。结果表明,在兼顾白车身总质量的前提下,弯曲刚度提高15. 66%,扭转刚度提高12. 28%,显著提高了白车身的结构性能。  相似文献   

12.
建立某SUV车架的有限元模型,对车架进行弯曲刚度、扭转刚度和模态分析,并进行车架的弯曲和扭转刚度测试,测试结果验证了有限元模型的准确性。按照质量敏感度因子排序确定车架主要构件的优化对象,包括零件料厚和纵梁截面尺寸,并建立多目标优化模型。在提升弯扭刚度和低阶频率达到设计目标的同时,降低车架的总质量,达到轻量化设计的目标。  相似文献   

13.
基于灵敏度分析的客车车身质量优化研究   总被引:2,自引:0,他引:2  
文中将灵敏度分析引入到客车质量优化中.首先建立了某承载式客车车身的有限元模型,确定其边界条件和载荷,并对模型进行了试验验证.接着选取车架上刚度和强度相对富裕的梁作为对象进行灵敏度分析.最后根据分析结果选取车身最大应力和位移作为状态变量,以车身总质量为目标函数,进行客车车身的质量优化.  相似文献   

14.
使用CATIA软件建立某电动客车车身骨架模型并导入HyperMesh软件中,通过添加约束和载荷建立基于壳单元的车身骨架有限元模型,运用该模型进行车身弯曲刚度与扭转刚度计算,并对骨架进行模拟实车的静态工况如弯曲和扭转等分析,获得不同工况下骨架应力和应变分布情况,然后对骨架进行模态分析,得到车身骨架的整体振动响应。结果表明,该车除极少部位存在应力集中和振幅较大的问题外,其他部位受力较为均匀,整车骨架结构刚度与强度在材料的屈服极限之内。  相似文献   

15.
高晨菲  赵永礼 《时代汽车》2023,(24):163-165
首先利用ANSYS Workbench对根据中国大学生方程式汽车大赛赛规设计的赛车车架进行有限元分析,得到弯曲、转弯、制动、扭转四种不同工况下赛车车架位移、应力的云图分布,然后根据分析结果对赛车车架进行轻量化,并将优化后车架再次进行有限元分析,其强度和刚度均符合赛规要求。结果表明,该设计不仅达到了赛车车架轻量化的目的,将赛车车架的质量由33.555kg降低为28.973kg,并且优化后的车架各项性能均得到了显著提升。  相似文献   

16.
建立了某燃料电池城市客车的车身骨架有限元模型以及带蒙皮和固定玻璃的车身骨架有限元模型.对两个模型分别进行了弯曲工况静应力、扭转工况静应力、扭转刚度和振动模态等力学性能的有限元分析.通过比较,定量研究了蒙皮、固定玻璃对客车车身结构相应力学性能的影响.  相似文献   

17.
重型商用汽车车架轻量化设计   总被引:1,自引:0,他引:1  
车架是汽车的主要承载构件,其功用是承受来自车内外的各种载荷,连接汽车的各大总成及各种车用设备,结构型式主要取决于汽车的总布置要求。深入研究车架的承载特性是车架结构设计改进和优化的基础,也是保证整车性能的关键。本文以某载货车车架为研究对象,建立了车架有限元分析模型;通过该车架模态仿真,验证了有限元模型的正确性;根据载货车的承载特点和行驶工况,对该车架在满载弯曲工况和满载扭转工况的静态应力分析,考察某载货车车架在典型工况下的应力分布,以此评价车架设计的合理性。在以上分析的基础上,本文对车架的连接横梁进行了结构优化,并对改进方案进行了有限元分析,通过与原结构的动态性能对比分析,确定了结构改进的可行性。  相似文献   

18.
纯电动客车骨架轻量化对于提升其续驶里程具有重要作用。本文首先基于变密度法对整车骨架进行拓扑结构优化,然后通过灵敏度分析和尺寸优化方法对骨架主要杆件的厚度进行优化。经过综合优化后的某纯电动客车骨架的刚强度性能均有提高,且减重效果明显。  相似文献   

19.
介绍了车身设计评价的关键指标-车身轻量化系数,阐述了车身轻量化系数的优化方法,即减轻车身质量和提高扭转刚度.指出,应主要从钢材选择、结构设计、新技术新材料的选用等角度实现车身质量减轻;主要通过车身加强件增加或板材加厚、车身高强度板用量提高、结构断面优化、车身接头设计优化等方法提高车身扭转刚度.  相似文献   

20.
为某12 m全承载混合动力城市客车建立车身有限元模型,通过强度、刚度、模态分析、结构轻量化和生命周期评价,分析车身结构优化对整车节能减排效果的影响。结果表明,与原车身骨架相比,结构优化后车身骨架质量减轻了52.5 kg,弯曲与极限扭转两种工况下均满足强度、刚度要求,且具有良好的固有振动特性。就全生命周期而言,轻量化后矿产资源消耗减少了0.4E04 kg Sb-eq.,化石能源消耗减少0.7E04 MJ,综合环境影响值减少0.42E11,减低率分别为3.81%、4.46%和4.56%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号