首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了研究大跨混凝土斜拉桥的温度效应对大桥的影响,在宜昌长阳铁锣坪斜拉桥施工过程中进行了24 h温度效应的观测。利用建模计算分析方法对其温度场影响及结构体内温度场的规律性进行了分析。结果表明,日照等不均匀温差对斜拉桥结构的影响很大。提出在施工监测监控中应注意有效消除温度的影响。  相似文献   

2.
混凝土斜拉桥主梁的非稳态温度场与应力场分析   总被引:11,自引:2,他引:11  
按非稳态温度场问题的热平衡控制微分方程和弹性力学平面应变问题的计算理论,应用变分原理给出了温度场和应力场的有限元计算列式。根据结构热分析和热应力分析的单向耦合特点提出了在同一有限元模型上按时间差分顺序耦合求解斜拉桥主梁温度场和应力场问题的方法,编写了计算机程序;并计算分析了一混凝土斜拉桥的主梁截面内温度分布和应力分布,对比了温度实测值,得出了几个重要的结论,对同类桥梁的设计具有实际参考价值。  相似文献   

3.
润扬长江大桥钢箱梁的温度分布监测与分析   总被引:3,自引:0,他引:3  
基于润扬长江大桥斜拉桥和悬索桥钢箱梁的温度观测结果,研究了扁平铜箱梁在日照作用下的温度分布特征,比较了悬索桥和斜拉桥2种桥型钢箱梁温度场的差异.实测结果表明:(1)钢箱梁顶板的昼夜温差明显大于底板的昼夜温差,且悬索桥钢箱梁的昼夜温差较斜拉桥更为明显;(2)钢箱梁底板的横向温度分布基本相同.可以不计横向温差影响;(3)钢箱梁顶板的横向温差表现为非线性时变特征,且斜拉桥和悬索桥钢箱梁的顶板温度分布模式存在明显的差异.润扬长江大桥扁平钢箱梁的温度分布模式为扁平钢箱梁在日照温差作用下的结构计算和桥面铺装层计算提供了重要参考.  相似文献   

4.
某斜拉桥主塔中下塔柱连接段实体段与下横梁同时浇注,总体尺寸为长52 m,宽12 m,总高10 m,混凝土设计标号C50,采用水平分两次浇注。由于结构尺寸大、混凝土标号高,混凝土浇筑后的水化热引起的温度应力应引起重视,以避免较大的温度应力产生裂缝;为此,对整个连接段进行了大体积混凝土温度场及应力场仿真计算,分析了温度场的作用规律及结构可能产生温度裂缝的部位,根据计算结果制定了合理的保温和温控措施。现场实测的温度分布值与理论计算值十分接近,结构表面无明显裂缝,验证了理论计算模型、计算方法与温控措施的正确性,可为同类型工程提供参考。  相似文献   

5.
为研究大跨度结合梁斜拉桥的温度场及所产生的效应,以望东长江公路大桥为背景进行分析。基于该桥结构健康监测系统1年的温度监测数据,分析该桥日照温度场分布规律,提出结合梁、桥塔竖向温度梯度以及斜拉索与桥塔、主梁温差的计算模式;采用该计算模式得到的温度荷载,对结构的温度变形效应进行有限元分析;最后通过EMD法提取主梁主跨跨中受温度影响的挠度响应。结果表明:钢主梁的竖向温差较小;斜拉索与桥塔、主梁的温差较大,对主梁挠度温度效应起决定作用;采用空间杆系单元建立的斜拉桥模型在温度荷载作用下的挠度计算值偏保守。  相似文献   

6.
鹤洞大桥大体积混凝土的温度控制及防裂   总被引:4,自引:0,他引:4  
介绍了鹤洞大桥大体积混凝土结构温度场的测试结果,分析了混凝土产生温度裂缝的原因,提出了温度应力计算及温差控制原则,制定了大体积混凝土浇注的温度控制措施。  相似文献   

7.
黄文通 《中外公路》2012,32(5):146-149
针对预应力混凝土双索面斜拉桥常见的边主肋截面主梁,提出了一种二维温度场计算模式.将主肋、小纵肋、顶板及翼板分开计算各自的温度梯度模式:顶板的温度只沿高度方向变化;边主肋与小纵肋的温度都是沿中心线顶缘向左右两侧与下缘降低;翼板的温度沿内侧顶缘向外侧与下缘降低,通过主梁的平截面假定计算出截面各点的应力与应变.对于斜拉桥这种超静定结构,可以利用杆系结构有限元法计算出由日照温差及季节温差产生的节点等效荷载及位移,从而确定结构的温度效应.最后结合工程实例进行计算分析,结果表明:温度效应引起的主梁变形的计算值与实测值比较接近,从而验证了该方法的可行性.  相似文献   

8.
对于水坝、建筑及桥梁工程中的大体积混凝土结构,施工期因水化热引起的混凝土内外温差及温度应力,容易导致混凝土早期裂缝,影响结构的正常使用和安全性.因此,大体积混凝土结构施工期的温控标准和温度控制非常重要.采用大体积混凝土施工期温度场和温度应力场分析程序包进行了特大桥承台混凝土施工温度场和温度应力场计算,提出防止产生温度裂...  相似文献   

9.
绥芬河斜拉桥转体施工温度影响分析   总被引:4,自引:0,他引:4  
绥芬河斜拉桥是我国采用水平转体施工长度最长的斜拉桥,文中以绥芬河斜拉桥转体施工过程为背景,在斜拉桥转体施工前后分别进行24 h温度效应观测的基础上,首先运用最小二乘法对斜拉桥主梁和索塔温差公式中的参数及相关材料的线膨胀系数进行了识别,然后运用有限元方法对本桥转体施工前后温度效应进行了理论计算。比较理论计算结果与实测资料,分析温度效应对平面转体施工斜拉桥的影响,提出斜拉桥转体施工会因日照方位的变化引起结构的不对称偏位,相对活动转盘中心产生温度不稳定力矩,使结构整体发生倾斜。  相似文献   

10.
沥青混凝土铺装桥面产生的高温会在箱梁内引起温差分布,导致温度变形,从而产生温度应力。目前,我国规范未对高温沥青摊铺引起的桥梁结构的温度场分布作出规定,故由其引起的温度应力在设计中尚未考虑。本文在借鉴国内外箱梁温度应力理论与方法的基础上,利用了ANSYS软件建立预应力钢筋混凝土连续梁桥三维实体模型,分别计算日照温度场、高温沥青摊铺温度场和设计活荷载下桥梁的应力状态。通过对比分析,研究了在实桥模型下,日照温度场和高温沥青摊铺温度场所引起的桥梁应力异同。  相似文献   

11.
混凝土斜拉桥的温度效应分析   总被引:19,自引:2,他引:19  
为了研究混凝土斜拉桥的温度效应问题,在武汉市江汉四桥施工过程中进行了24h温度效应的观测。在实测资料的基础上,首先对温差公式进行了参数识别,然后对此桥的温度效应运用有限元的方法进行了理论计算,通过与实测资料的比较,说明了非线性温度梯度分布模式的适用性,计算了温度效应所导致的温度应力。同时为了保证施工过程的连续性,对主梁立模标高的主动修正问题,也进行了分析和计算。  相似文献   

12.
介绍了预应力混凝土斜拉桥施工过程的仿真分析方法。该方法通过引入CR列式法考虑结构的几何非线性行为、引入温度场理论计算温度的影响、采用有限元步进法结合随龄期调整的有效模量法考虑混凝土收缩徐变的影响,同时收缩徐变参数及模式可以根据实际材料特性而选取。该方法与以往的方法相比分析精度更高。利用该方法开发的软件1998年在汕头Que石大桥上应用,受到专家的好评。  相似文献   

13.
为了精确模拟混凝土箱形梁桥中温度场的分布情况,详细地分析了影响温度场变化的主要因素,并把这些影响因素转化成热传导的边界条件,施加在桥梁结构上,然后进行有限元瞬态热传导分析,就得到任意时刻桥梁结构的温度场.通过实例计算,说明了利用该方法计算出的温度分布和温差极值比现行规范与实际更接近,以此为基础计算出来的温度应力更准确.  相似文献   

14.
组合结构桥梁由热工性能差异显著的钢材和混凝土构成,温度效应往往成为控制其设计和应用的关键因素,因此,对其温度场和温度效应进行准确地计算与评估具有重要的科研价值与工程意义。对组合结构桥梁温度场与温度效应开展了综述研究。首先,对各国桥梁规范温度荷载的规定进行归纳对比,讨论不同规范中温度荷载计算方法的特点,总结中国现有规范对全国气候划分的分辨率不足、对日照辐射的考虑不够完善等有待提升之处;其次,对国内外桥梁温度场与温度效应研究的发展与现状进行调研,重点分析中国钢-混凝土组合结构桥梁温度场与温度效应的研究进展,对现有研究的不足进行讨论;再次,提出基于可靠度理论的组合结构桥梁设计温度荷载模型,可使用气象部门统计的温度统计资料,通过MATLAB高效数值模型计算形成组合结构桥梁温度场时程数据,进一步利用极值模型获得桥梁设计的温度荷载代表值,快速、高效地实现对桥梁地理信息、结构参数等因素的考虑;最后,以北京地区典型3跨连续直线组合梁桥为算例,对连续钢-混凝土组合桥梁的温度效应展开研究。提出的基于可靠度理论与MATLAB的钢-混凝土组合结构桥梁设计温度荷载模型,可实现任意地区组合结构桥梁温度场的精确计算并显著提升计算效率。  相似文献   

15.
以新疆小沙河中桥为背景,通过试验实测与有限元分析,研究西北极寒地区混凝土箱梁温度场分布特点及其温度效应。选取2016年1月20日至2016年2月20日实测温度数据作为研究对象,分析结果表明:受太阳辐射的影响,梁高方向存在明显的温度梯度,测点T1,T4最大温差达到6.4℃,测点T4,T6最大温差达到5.6℃;腹板壁厚方向存在明显的温度梯度,测点T3,T5之间最大温差达到5.6℃;底板沿壁厚方向存在明显的温度梯度,测点T7,T8之间最大温差达到8℃。基于传热学分析理论,建立混凝土箱梁温度场有限元模型,选取2016年1月27日06:00到2016年1月28日06:00的实测温度数据,验证了混凝土箱梁温度场有限元模型的准确性。在验证有限元模型准确性基础上,计算日照升温和寒潮降温作用下混凝土箱梁梁高、腹板以及底板壁厚方向的温度场分布,计算分析最不利时刻温度场作用下的混凝土箱梁的温度效应,并与现有规范进行对比。研究结果表明:西北极寒地区带沥青铺装的混凝土箱梁竖向温度梯度与规范有所差别,箱梁顶板温差较小,而底板温差较大;日照下腹板温度高于顶板,降温时顶板温度高于腹板;温度效应计算较规范更为不利,降温时在底板产生的拉应力可能使混凝土产生开裂;在进行西北地区混凝土箱梁的设计计算时,建议根据桥位处气象数据对温度效应进行分析。  相似文献   

16.
以润扬大桥悬索桥和斜拉桥的扁平钢箱梁为研究对象,采用假设检验方法对扁平钢箱梁长期温度监测结果进行了温度分布特性分析,重点研究了扁平钢箱梁的横向温差和竖向温差分布特征,在此基础上采用极值分析方法计算了扁平钢箱梁的温差标准值,建立了钢箱梁温差计算模型,并针对悬索桥和斜拉桥的温度分布模式建立了6种最不利横向温差计算模型.研究结果表明:润扬大桥悬索桥和斜拉桥底板的横向温差可忽略;悬索桥和斜拉桥钢箱梁对称轴位置受相同的竖向温差作用;悬索桥和斜拉桥顶板的横向温度分布差异较大.  相似文献   

17.
为厘清太阳辐射作用下钢管混凝土拱肋内部的不均匀时变温度场,剖析其对钢管混凝土脱空效应的影响机制,并为钢管混凝土拱桥的脱空病害防治奠定理论基础,依托受日照辐射较强的贵州香火岩特大跨钢管混凝土拱桥实际工程,建立考虑钢管与混凝土界面接触关系的精细化温度-应力耦合数值模型;基于ASHRAE晴空模型及温度场计算理论,开展了钢管混凝土拱肋日照辐射不均匀时变温度场分析,揭示了钢管混凝土拱肋横截面的温度分布规律及其随时间的变化规律,并给出了计算钢管混凝土横截面温度梯度的近似公式;结合脱空的应力判别标准,计算出了拱肋横截面沿环向不同位置处的脱空高度,进而明确了钢管混凝土拱肋的横截面脱空分布模式;基于诱导振动理论,选取主要受温度影响而产生脱空的拱段,开展了钢管混凝土拱桥脱空检测试验研究,并与理论分析进行对比,验证了理论分析的可靠性。研究结果表明:日照辐射作用下,钢管混凝土截面温度场在时间、空间分布上均呈高度非线性,核心混凝土温度变化滞后于外包钢管,钢管与核心混凝土的最大温差超过25℃;日照不均匀温差引起的界面拉应力达到1.4~1.5 MPa,导致钢管混凝土环向脱空高度达到0.11~0.13 mm;基于诱导振动法的钢管混凝土拱肋脱空检测方法可识别出脱空的可能性,并发现太阳辐射作用使钢管混凝土的脱空程度略有增强。  相似文献   

18.
肋板式主梁温度场的数值计算方法   总被引:3,自引:1,他引:3  
介绍了荆州长江公路大桥500m斜拉桥主染温度测点的布置情况,典型天气情况下24h内温度场的变化。根据实测温度结果提出了一种计算轴向应变ε0和曲率х的数值计算方法,以此作为温度参数可计算不均匀温度场对斜拉桥变形和受力的影响量。  相似文献   

19.
介绍了预应力混凝土斜拉桥施工过程的仿真分析方法.该方法通过引入CR列式法考虑结构的几何非线性行为、引入温度场理论计算温度的影响、采用有限元步进法结合随龄期调整的有效模量法考虑混凝土收缩徐变的影响,同时收缩徐变参数及模式可以根据实际材料特性而选取.该方法与以往的方法相比分析精度更高.利用该方法开发的软件1998年在汕头()石大桥上应用,受到专家的好评.  相似文献   

20.
介绍了太平大桥混凝土箱体温度场的测试方案、测点布置及大气自然条件下箱体断面温度场的测试结果,并分析了箱体温度变化规律,为计算太平大桥施工过程中照温差引起的箱梁温度应力和施工控制中照温差引起的标高变化提供依据,也为《公路桥梁设计规范》补充制定“箱梁日照温差梯度形式”积累资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号