首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
齿轮表面涂层是提高变速器齿轮疲劳寿命的有效方法。本文中基于非线性有限元法、传热学和涂层摩擦学理论,将轮齿之间摩擦产生的热视为热源,采用摩擦磨损试验机获得涂层表面的摩擦因数,精确计算稳态条件下涂层齿轮的摩擦热流密度和对流系数;运用ANSYS有限元软件,对某7速双离合器自动变速器涂层齿轮进行不同涂层厚度下温度场的数值仿真,揭示了涂层摩擦因数、转速和转矩等参数对齿轮稳态温度场的影响;采用红外热成像仪在齿轮动力循环加载试验台上测试了不同工况下的齿轮表面温度。结果验证了仿真模型的准确性,并表明,涂层后齿轮摩擦因数的减小可有效降低齿轮的最高本体温度。本研究为变速器齿轮的抗胶合和表面改性设计提供参考依据。  相似文献   

2.
基于ANSYS对变速器各档啮合齿轮进行瞬态动力学分析,再结合齿轮接触理论和疲劳损伤累积理论,求得各档齿轮的接触应力大小和疲劳寿命曲线。从所求结果看出,二档和三挡齿轮啮合时接触应力不大,小于齿轮的许用接触应力,且疲劳寿命较高,满足设计要求;一档和四挡齿轮啮合时的接触应力大于了齿轮的许用接触应力,且疲劳寿命较低,不能满足设计要求。基于以上原因,利用齿向和齿廓相结合的轮齿修形方法,对一档和四挡齿轮进行了轮齿修形,从最终求得结果来看,两组啮合齿轮的接触应力均大幅度降低,同时疲劳寿命得到了提高,轮齿修形达到了很好的效果。  相似文献   

3.
目前国内外的汽车所使用的普通齿轮变速器.几乎全设置了同步器。同步器是利用一对锥形摩擦副所产生的摩擦力矩,使两个待啮合齿轮转速很快相等.缩短换档时间,阻止待啮合的两个齿轮同步之前啮合,有效地实现无冲击而平顺换档。  相似文献   

4.
故障现象一辆斯太尔自卸车,当经过颠簸路段时变速器会脱挡。同时伴有“咣、咣”异响。故障分析该车装用的是富勒RT11509C变速器。根据该变速器结构,并结合故障现象分析,认为脱挡原因可能是副变速器的齿轮磨损引起啮合不到位。检查与修理拆解副变速器检查,发现两个侧齿轮(两根副轴上的齿轮)端面与壳体接触处有轻微摩擦痕迹,  相似文献   

5.
齿轮是汽车变速器关键传动零件,齿轮的正确啮合与疲劳寿命直接关系到变速器的工作性能和使用寿命。文章以某客车变速器为研究对象,针对变速器在总成疲劳寿命试验中出现的齿轮齿端崩角失效问题,应用金相检验、电镜观察、齿轮齿面拓扑、Romax计算分析、尺寸链计算等方法,逐步查明导致轮齿齿端崩角失效的原因,并根据分析结果对齿轮进行优化改进。通过实验验证了改进方案的可行性,最终解决了此齿端崩角问题。为类似的齿轮疲劳失效问题提供了可以借鉴的分析思路和验证方法。  相似文献   

6.
为研究变速器倒挡齿轮的疲劳失效,针对某变速器倒挡齿轮进行了动态有限元分析。建立变速器倒挡齿轮的有限元模型,分析倒挡齿轮工作特性,确定了齿轮约束和加载方式,利用Radioss求解器计算倒挡齿轮啮合过程的接触应力,得到任意时刻的接触应力及最大接触应力所在位置,同时进行了接触应力的理论计算。研究表明,倒挡齿轮间的接触应力远小于材料的接触疲劳极限,倒挡齿轮接触强度符合设计要求。  相似文献   

7.
齿轮作为手动变速器的主要传动部件,其啮合情况对整个变速器的性能好坏有着至关重要的影响。文章采用MASTA软件实现了对某微型车变速器的齿轮啮合分析,并建立了变速器的仿真模型,模拟其实际负载状况完成变速器的齿轮传动过程分析;同时利用软件的齿轮微观修形模块,优化齿面啮合的接触斑点,减小传递误差,达到了改善齿面接触状况的目的。表明运用专业软件进行建模与仿真分析,可有效减少试验费用,缩短研发周期,为今后新变速器齿轮的开发与应用提供了较好的指导作用。  相似文献   

8.
机械式变速器齿轮副在啮合过程中产生的高频啸叫噪音,主要是由齿轮副的啮合错位和冲击引起的。利用振动和噪音传感器测试,通过主观评价及噪音阶次分析确定了啸叫的来源。利用Romax软件分析,通过齿轮的微观修形,降低了齿轮副的传递误差及优化了齿轮接触区域;经整车测试及主观评价,该方案对提高车内噪音品质有明显效果。  相似文献   

9.
为解决某重型载货汽车变速器开发试制阶段副箱齿轮失效的问题,采用化学分析、机械性能检验分析、齿面分析、断口分析、电镜和能谱分析等方法,对副箱齿轮进行失效分析。分析结果表明,副箱被动齿轮的开裂性质为典型的疲劳开裂,疲劳源位于次表面夹杂物聚集区。导致该齿轮疲劳断裂的原因主要是齿轮偏载、齿顶齿根干涉以及轮齿次表面有夹杂物。  相似文献   

10.
文章提出一种基于壳体动态响应的齿轮NVH优化方法,分析了齿轮动态啮合力的成因及其影响因素,获得了动态啮合力的计算模型。结合某款电驱动变速器啸叫实例,采用全有限元仿真分析方法,获得齿轮修形优化前后齿轮副传递误差、齿面接触应力及动力学响应结果,并进行对比分析。结果表明,通过齿轮修形优化可有效降低齿轮动态啮合力,减小壳体表面动态响应,从而改善特定工况下的变速器啸叫,提高整车NVH性能。  相似文献   

11.
变速器作为汽车动力传递的关键零部件,其摩擦磨损问题对汽车的使用性能和寿命产生了很大的影响。文中从轴承、齿轮、同步器3个主要摩擦副及润滑剂的选择、总成清洁度控制等方面论述了变速器设计中的摩擦学问题,分析了摩擦学设计对于变速器设计的重要性。  相似文献   

12.
为了使相同尺寸规格的变速器满足不同型号车辆对变速器强度的不同要求,合理设置变速器齿轮的磨合规范以达到最佳强化效果,本文对桑塔纳变速器齿轮磨合强化进行了研究。根据一档齿轮低载强化特性和该变速器磨合时间,在不增加磨合成本的基础上,研究了该变速器的最佳磨合载荷,并在变速器试验台上进行了磨合强化试验。试验结果表明,在不改变磨合时间的情况下,用最佳磨合载荷对该变速器进行磨合强化,变速器的平均疲劳寿命提高了39%。变速器齿轮最佳磨合规范的研究不但有助于提高变速器的疲劳寿命,也为进一步制定变速器齿轮的磨合规范、标准提供了技术依据。  相似文献   

13.
建立了变速器齿轮与齿轮轴系统的有限元模型,并对其进行有限元分析,以计算齿轮轴变形和轮齿接触应力,分析变速器齿轮轴变形对齿面接触状态的影响.通过与经典方法计算结果的比较,表明所建立的齿轮与齿轮轴系统有限元模型,不但可准确计算齿轮轴变形和齿面接触应力,且能综合分析齿轮轴变形对齿面接触区域的载荷分布、轮齿间载荷分配和齿面接触应力的影响,为更全面、精确分析变速器齿轮的齿面接触状态和载荷分布,预测齿轮疲劳寿命提供依据.  相似文献   

14.
汽车齿轮的损坏,一般出现接触疲劳、端末磨损、牙齿断裂、齿面磨损和齿面“粘结”五种形式。变速器换档齿轮主要是换档时冲击负荷引起的端末磨损损坏,后桥齿轮多为接触疲劳损坏。为了探讨不同碳氮共渗工艺和渗碳工艺处理的零件的静强度,抗冲击磨损能力和抗接触疲劳性能,进行了零件的静强度试验、换档试验和接触疲劳试验。  相似文献   

15.
导致渗碳齿轮接触疲劳裂纹形成与扩展的动力参数是齿轮次表面所受的最大切应力τmax与其表面硬度的比值,减小该比值可延缓齿轮表面接触疲劳裂纹形成与扩展过程,提高齿轮疲劳寿命.分析了强化喷丸工艺对渗碳齿轮次表面所受τmax和表面硬度的影响,通过强力喷丸引入的冷作硬化可使渗碳齿轮表面硬度明显提高;引入的高残余压应力可使渗碳件次表面所受的τmax显著减小.试验表明,齿轮渗碳后再按最佳工艺进行强化喷丸后,可显著提高齿轮表面的疲劳强度.  相似文献   

16.
<正>一、技术背景带有取力器的变速器可为水泥搅拌、自卸车等车辆提供辅助动力,实现特殊功能;车辆的转向助力通常由发动机带动助力泵实现助力,从变速器取力的紧急转向取力器可在转向助力泵无法提供转向助力时为车辆提供转向助力。变速器在恶劣工况下使用时,飞溅润滑常常不能满足使用要求,导致齿轮副啮合面润滑不足,进而带来点蚀等早期失效,强制润滑可以很好地解决这个问题。  相似文献   

17.
为解决传统齿轮用钢20CrMnTi淬透性适配不好,钛夹杂对接触疲劳寿命的不利影响等问题,本试验对日本牌号齿轮钢SCr420H进行了应用研究。SCr420H钢与20CrMnTi钢的晶粒长大倾向、生产工艺性能、单齿弯曲、单对齿轮疲劳及装车等各项试验对比的结果表明,SCr420H是取代20CrMnTi用于EQ140变速器齿轮的较理想钢种。  相似文献   

18.
张凯  张军 《汽车技术》2022,(5):16-21
为解决驱动半轴与轮毂轴承的接触面在起步力矩冲击下产生粘滑摩擦,导致某车型驱动轮端出现噪声的问题,通过建立AMESim整车传动模型,分析了锁紧力、接触面摩擦特性、花键刚度等因素对粘滑摩擦的影响趋势,并结合仿真结果,从经济性、有效性角度出发,采用对驱动半轴轴肩表面进行磷化工艺处理得到磷酸锰转化涂层以改变接触面摩擦特性的方案,有效解决了该车型的起步噪声问题。  相似文献   

19.
研究了DLC涂层对配副20CrNiMo和35CrMo摩擦磨损特性的影响,并分析了二者的磨损机理。试验结果表明,DLC表面处理显著提高了这两种材料的摩擦磨损性能。经DLC处理后,20CrNiMo和35CrMo配副的摩擦系数由未处理时的0.090下降到0.068,磨损率分别减少了91%和97%;DLC处理改变了这两种材料的磨损机制,由未处理的点蚀和微点蚀转变为微磨粒磨损。  相似文献   

20.
为解决某乘用车手动变速器开发试制阶段台架试验中倒挡惰轮断齿失效的问题,先后采用元素含量检测分析、热处理质量检验分析、断口分析、齿轮啮合区分析、扫描电镜检测及能谱分析等方法,对失效的倒挡惰轮进行失效分析。分析结果表明,该倒挡惰轮的失效形式是一种典型的剪切疲劳开裂,断口裂纹的疲劳源位于偏载齿面节圆部位次表面的夹杂物聚集区。导致该齿轮剪切疲劳断裂的原因主要是轮齿次表面有夹杂物、载荷过大以及齿轮偏载。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号