首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
本文提出了一种将复合相变材料(石蜡(PA)混合膨胀石墨(EG))与空冷相耦合的电池热管理方案(简称APE-BTMS),该系统中电池中部采用PA/EG进行冷却,电池的上下端采用空冷(空气流速为1.23 m/s)。APEBTMS的主要目的是,将电池的工作温度冷却到最佳温度范围的同时,减轻整个电池热管理系统的质量。实验结果表明:APE-BTMS-45模型在相同的条件下展现了最佳的冷却性能;同时,基于COMSOL建立APE-BTMS数值模型,进行更加精细地轴向厚度和不同环境温度下对APE-BTMS冷却性能加以对比,经数值模拟结果进一步验证,APEBTMS-45在对比数据中具有最佳的冷却性能,并可最大轻量216.71 kg。本文的研究结果可为基于相变材料的电池热管理系统的设计开发提供参考和数据支撑。  相似文献   

2.
为分析泡沫铜/石蜡复合相变材料的车用动力锂电池散热问题,建立了电池生热模型,给出了该复合相变材料在不同孔隙率下的热物性参数值,利用有限元法分析了材料包覆方式、材料厚度、对流换热系数、环境温度等对电池温度的影响。结果表明,四面包覆和双面包覆的复合相变材料比无相变材料的电池温度分别降低了10.36℃和12.56℃,冷却效果明显;增加材料厚度和对流换热系数以及降低周围环境温度,电池温度将降低;当电池表面温度处于相变材料的相变温度区间时,继续增加材料厚度和对流换热系数散热效果不显著;复合相变材料用量不充足时,相变潜热占主导作用,增加孔隙率将使电池温度先增大后减小。  相似文献   

3.
段志勇  马菁 《汽车工程》2023,(11):2047-2057
为满足锂电池成包后的温度一致性需求,本文提出一种基于热管与液冷板的复合冷却结构。利用数值模拟对液冷板内两种不同流道(流道Ⅰ和流道Ⅱ)的冷却性能进行对比,结果表明流道Ⅱ的冷却性能更优;采用正交试验法筛选出4个对流道Ⅱ冷却性能影响较大的结构因素作为设计变量,以电池组温差和冷却液压降为目标函数,建立设计变量与目标函数之间的Kriging代理模型并采用NSGA-Ⅱ遗传算法进行寻优。与初始结构相比,优化后的流道II对应的电池组温差和冷却液压降分别降低了10.52%和50.14%,而电池组最高温度仅升高了0.68%。本文的方法和结论可为热管式锂电池冷却结构的设计与优化提供借鉴。  相似文献   

4.
通过实验研究了锂离子电池1C倍率放电,20℃自然对流情况下的温升特性。测得了20℃环境温度下电池的充放电内阻特性,并根据某品牌18650型锂离子电池的物性参数以及实验测得的内阻数据建立了电池单体仿真模型,仿真计算了与实验同工况下的温度分布情况,最大误差4.9%。设计了一种包含480节电池的并行通风空气冷却散热结构,并通过正交试验进行了优化,得到了进出风孔距电池的最小距离1mm,上挡板距离电池的最小距离1mm,下挡板距离电池的最小距离1mm的最优结构,使电池组的最大温升下降了5.71℃,最大温差降低了5.06℃。并基于最优结构给出了120s后每60s改变送风方向的往复送风策略,使电池组即使在40℃、2C放电的恶劣工况下也能够工作在25℃-40℃,电池单体温差5℃以下的工作环境中。  相似文献   

5.
为降低温度变化对隧道水泥砂浆材料强度和变形的影响,在隧道工程中引入具有自调温能力的相变材料,制备成相变材料水泥砂浆。首先,将石蜡、高密度聚乙烯和膨胀石墨熔融共混,获得复合相变材料;然后,掺入水泥砂浆中,得到新型相变水泥砂浆。通过搭建热响应测试平台,分析其热应变随温度变化规律,评估其蓄热性能,并对比得出相变材料对不同水灰比砂浆试样的热力学性能影响。结果表明: 复合相变水泥砂浆能发挥相变材料的蓄热性能,其相变潜热为34.82 J/g,热应变比普通水泥砂浆材料最大降低36.63%。相变材料的掺入有效降低了试样的表面温度和热应变,这对改善水泥砂浆材料的温度变形及控制裂缝的发展具有重要作用,可为能源地铁隧道及其裂缝修复等提供新型材料。  相似文献   

6.
针对锂离子电池组在不同充电倍率下最高温度和单体温度均匀性的要求,在构建动力电池热模型的基础上,以抑制电池组内最高温度和最大温差为目标,仿真分析了液冷板布置位置、流道设计和冷板出入口位置等因素对电池组温度的影响规律。仿真结果表明,本文所设计的冷却系统,在电池组以2C倍率充电时,最高温度可控制在35.5℃,温差不超过5℃。  相似文献   

7.
为研究电池热失控传播过程中的热量传递路线,建立了由一维电化学模型、内短路模型、三维传热模型和副反应模型相耦合而形成的电池组热失控模型,并用针刺实验进行了验证;提出了一种基于相变材料和液体冷却的电池模组热管理方案,并分析了它对电池模组热失控传播的抑制作用。结果表明:所提出的电池热管理方案可使电池模组各个电池发生热失控的时间间隔延长,各电池温度下降的速度加快,能很好地起到抑制电池模组热失控传播的作用。  相似文献   

8.
选用碳酸钙为壁材,石蜡为芯材,采用原位聚合法制备碳酸钙-石蜡复合相变材料,通过综合热分析仪对碳酸钙-石蜡复合相变材料储热性能进行表征,复合相变材料的相变焓及相变峰温分别为120. 1J/g,相变峰温为54. 1℃。将碳酸钙-石蜡复合相变材料掺入沥青混合料后对其的路用性能和路面降温效果进行评价。试验结果表明:当复合相变颗粒掺量达到5%时可降低试件温度约5℃,复合相变颗粒掺入沥青混合料后对其低温抗裂性和水稳定性的影响不大,有利于沥青混合料的高温稳定性。  相似文献   

9.
路兴隆  张甫仁  赵海波  孙世政  李雪  赵浩东 《汽车工程》2023,(11):2058-2069+2081
为提升电池热管理系统的综合性能,本文提出了一种具有同心圆结构通道的液冷板。首先,利用控制方程讨论了环形通道数量和宽度对液冷板综合性能的影响,并通过综合评价指标选出了最佳环形通道数量和宽度。然后,为了更大程度上降低液冷板压降,将部分曲段通道进行直化,并优化了直段通道角度以及圆心距。与初始模型相比,最优模型的压降降低了62.83 Pa(67.61%),温度降低了1.1℃。最后,为进一步提升系统的散热性能,在最优模型的基础上引入了不同种类和体积分数的纳米流体作为冷却介质,与纯水相比,在低雷诺数下采用纳米流体作为冷却介质可以获得较好的综合性能,综合评价指标最高可提升16.19%,效果显著。  相似文献   

10.
电动汽车电池组热管理系统的关键技术   总被引:15,自引:0,他引:15  
电池组热管理系统的研究与开发对于电动汽车的安全可靠运行有着非常重要的意义。本文分析了温度对电池组性能和寿命的影响,概括了电池组热管理系统的功能,介绍了电池组热管理系统设计的一般流程,并对设计热管理系统提出了建议。文章重点分析了设计电池组热管理系统过程中的关键技术,包括电池最优工作温度范围的确定、电池生热机理研究、热物性参数的获取、电池组热场计算、传热介质的选择、散热结构的设计等。  相似文献   

11.
采用数值模拟的研究方法,对比分析了某纯电车型在高速超速以及驱动耐久工况下动力电池包采用液冷和冷媒直冷两种方案的冷却性能,研究结果表明,对于高速超速工况,相对于液冷方案,采用冷媒直冷电池包温度降低了约10%;对于驱动耐久工况,采用冷媒直冷方案电池包温度降低了约 16%,与此同时,电池包均温性也有所改善。在相同工况条件下,动力电池包冷媒直冷的冷却性能优于液冷。  相似文献   

12.
彭豪  孟庆国  尹骞 《时代汽车》2022,(2):104-105
针对动力电池包热管理中系统温度不均匀的问题,本文以某款液体循环冷暖一体化热控方式的电池包为研究对象,通过Ansys-fluent对其液冷回路进压降仿真,并优化液冷回路,最后通过实验验证优化前后系统的散热/加热性能,得出流量均匀性越好在液冷和液热时,电池包内电芯间的温差越小,散热以及加热效率更高。为后续热管理设计可将流道的设计作为重点考察对象进行优化。  相似文献   

13.
为4 A·h的21700型锂离子电池研发了蜂巢式液冷电池模块,并通过搭建的试验平台测定其充/放电过程的传热特性。结果表明:在25℃环境温度下,0.5C恒流恒压充电和1C恒流放电过程中,电池模块的最大温差均被控制在2℃以内;40℃环境温度下,1C恒流放电过程中,当冷却液流量大于1 L/min时电池模块的最大温差能保持在所要求的5℃以内。说明蜂巢式液冷电池模块冷却性能优良,可为未来电池热管理方案的设计提供技术支撑。  相似文献   

14.
电动汽车动力电池散热需求会受到外部环境温度、风速和负载电流变化等因素的影响,如果不及时散热,动力电池的温度会迅速攀升,进而影响电动汽车的驾驶性和安全性。基于此提出一种锂离子电池非线性冷却优化方法。首先,通过对锂离子电池生热、散热机理分析,建立考虑传热系数随冷却液流速变化的锂离子电池集中热模型,通过电池特性测试试验确定电池内阻和熵热系数等热物性参数,并与AMESim模型对比,验证模型的有效性。然后,基于电池冷却系统非线性和易受负载电流变化影响的特征,提出一种考虑电池冷却系统的稳态特性以及参考变量前馈功能和闭环反馈消除静态误差机制的非线性冷却优化方法,并对其稳定性和鲁棒性进行研究。仿真结果表明:在NEDC-HWFET-US06组合工况下,非线性冷却优化方法调节下的电池温度与目标温度的最大偏差较PID方法减小了0.8 K,并且冷却过程的能耗降低了6.3%,具有更好的调节效果。  相似文献   

15.
电动汽车锂离子电池的生热特性   总被引:1,自引:0,他引:1  
对锂离子电池生热特性的研究是电动汽车动力电池热管理设计的基础。文章以电动汽车用11A·h电池单体为例,进行有限元建模分析,比较了它在不同环境温度下的生热特性。经过试验验证,测试结果与仿真分析相符合,该电池在环境温度为-20~40℃时以1C放电终止,温升为20℃左右。指出由于该电池推荐工作温度为30~55℃,因此使用时电池外部应配有加热系统;当电池放电倍率始终小于1C时,可不配置强制冷却系统。  相似文献   

16.
随着电动汽车销量的增加,动力电池的热安全问题日益受到关注,电池温度过高会影响电池的性能,严重时会导致热失控的发生。为研究锂电池的放电特性,探究不同因素对电池组往复流风冷散热的影响规律,基于外接UDF的Fluent仿真计算,利用正交试验,分析了入口风速、冷却空气温度、往复流周期三个参数对电池温度分布的影响规律。研究结果表明往复流周期对电池组温度分布均匀性的影响最大,入口风速对电池组最高温度影响最大,而冷却空气温度影响则相对较小。在此基础上,进一步获得了往复流散热性能的最优匹配参数。  相似文献   

17.
为了提高并联式混合动力汽车发动机和动力电池低温生存能力,探索发动机与电池冷却余热资源的利用新途径,提出了一种基于余热再利用的发动机和动力电池双向循环低温预热的新方法。建立发动机和动力电池余热数值模型,定量分析和研究余热系统的温升特点与温度分布状况,揭示了发动机与动力电池余热的传热规律,设计了基于相变材料的自动双向热控装置并进行了低温试验。结果表明:该方法实现了发动机与动力电池吸热冷却和发热加热的一体化应用,可将发动机冷却余热经热换器预热动力电池并使电池内部温度保持在29℃,又将动力电池冷却余热反向循环传输至发动机机体,使发动机内部冷却液温度预热至51℃,能够明显提高发动机和动力电池低温运行能力,节约了能量,验证了所提方法的优越性。  相似文献   

18.
针对锂离子动力电池在不同条件下电池模组温度变化及热失控传播特性不明晰的问题,提出了基于不同填充材料的电池热管理模拟方案。利用COMSOL Multiphysics软件,以18650电池为研究对象,建立锂离子电池模组热电耦合模型,分析不同填充材料下充放电倍率、液冷流量、液冷管排数对正常电池模组温度的影响;探究不同填充材料对电池模组热失控传播的影响;结合电池热失控试验数据验证模型准确性。结果表明,填充材料和管排数对电池正常模组温度影响较大;填充材料为石墨时最佳液冷管排数为8根;PCM材料能将对热失控传播时间控制在40~50 s/颗,相比于石墨具备明显优势。  相似文献   

19.
为了提高动力电池组低温环境下的放电效率,针对增程式电动车低温行车条件,考虑电池组预热过程中单体温度的不一致及单体排布等因素的影响,进行增程式电动车动力电池组低温行车预热策略研究。采用Chrom_17011充放电测试机及高低温恒温箱对26650磷酸铁锂电池单体进行低温试验与AMESim模型仿真对比的方法验证预热模型的精度,分析发动机怠速为电池组进行预热时,水泵转速、串行通风鼓风量、串行通道单体数量及单体与单体之间的间隙对电池包内入、出口单体温差的影响。通过整车仿真,分析行车预热策略与传统CDCS策略在不同环境温度下对等价燃油消耗量的影响。研究结果表明:在单体排布间距固定和水泵转速为800 r·min-1的条件下,电池包串行通风风量越大,串行通道入、出口单体温差越小,单体预热时间相对较长,且在串行通风风量不小于3 g·s-1的条件下,能满足电池包串行通道最大温差小于5℃的要求;环境温度在-20℃时,行车预热策略比CDCS策略等价燃油消耗率降低16.25%,纯电动续驶里程增加9.95 km;其影响等价燃油消耗率的因素有制动能量回收量和内阻消耗量,内阻消耗量是影响等价燃油消耗率升高的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号