首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To further increase passenger train comfort and handling performances, a mechatronic approach to the design of railway vehicles is necessary. In fact, active systems on board a railway vehicle allow to push design barriers beyond those encountered with just passive systems. The article deals with the development of an electro-mechanical actuator to improve the running behaviour of a railway vehicle, both in straight track and curve. The main components of the active system are a brushless motor and a mechanical transmission, used to apply a longitudinal force between the carbody and the bogie of the vehicle. The actuator is operated in force control. Different control strategies were developed for straight track running, where the aim is to increase the vehicle critical speed, and for curve negotiation, where the goal is to reduce the maximum values of track shift forces. A mathematical model of the railway vehicle incorporating the active control device has been developed and used to optimise control strategies and hardware set-up of the active device and to estimate the increase in operating performances with respect to a conventional passive vehicle. The active control device has then been mounted on an ETR470 railway vehicle, and its performances have been evaluated during in-line tests in both straight and curved tracks.  相似文献   

2.
This paper presents the development of a modal control strategy for the active steering of solid axle railway vehicles and reveals benefits of actively stabilising the wheelsets of a railway vehicle. A modal decomposition is applied to a 2-axle railway vehicle to de-couple its body lateral and yaw motions and hence to allow more detailed analysis of the vehicle behaviour and more robust design of active controllers. Independent controllers for the two motions are developed based on the two de-coupled modes. Parameter variations such as creep coefficients and wheelset conicity are taken into account in the design process to guarantee a robust design. The study shows that, compared to a passive vehicle, the vehicles with actively steered wheelsets not only perform much better on a curved track, but also improve the ride quality on straight track. Computer simulations are used in the study to verify the development of the controllers and assess the system performance with the control scheme proposed.  相似文献   

3.
A robust controller is designed for active steering of a high speed train bogie with solid axle wheel sets to reduce track irregularity effects on the vehicle’s dynamics and improve stability and curving performance. A half-car railway vehicle model with seven degrees of freedom equipped with practical accelerometers and angular velocity sensors is considered for the H control design. The controller is robust against the wheel/rail contact parameter variations. Field measurement data are used as the track irregularities in simulations. The control force is applied to the vehicle model via ball-screw electromechanical actuators. To compensate the actuator dynamics, the time delay is identified online and is used in a second-order polynomial extrapolation carried out to predict and modify the control command to the actuator. The performance of the proposed controller and actuator dynamics compensation technique are examined on a one-car railway vehicle model with realistic structural parameters and nonlinear wheel and rail profiles. The results showed that for the case of nonlinear wheel and rail profiles significant improvements in the active control performance can be achieved using the proposed compensation technique.  相似文献   

4.
The high-speed train has achieved great progress in the last decades. It is one of the most important modes of transportation between cities. With the rapid development of the high-speed train, its safety issue is paid much more attention than ever before. To improve the stability of the vehicle with high speed, extra dampers (i.e. anti-hunting damper) are used in the traditional bogies with passive suspension system. However, the curving performance of the vehicle is undermined due to the extra lateral force generated by the dampers. The active suspension systems proposed in the last decades attempt to solve the vehicle steering issue. However, the active suspension systems need extra actuators driven by electrical power or hydraulic power. There are some implementation and even safety issues which are not easy to be overcome. In this paper, an innovative semi-active controlled lateral suspension system for railway vehicles is proposed. Four magnetorheological fluid dampers are fixed to the primary suspension system of each bogie. They are controlled by online controllers for enhancing the running stability on the straight track line on the one hand and further improving the curving performance by controlling the damper force on the other hand. Two control strategies are proposed in the light of the pure rolling concept. The effectiveness of the proposed strategies is demonstrated by SIMPACK and Matlab co-simulation for a full railway vehicle with two conventional bogies.  相似文献   

5.
This article presents a dynamic model of a railway vehicle for the development of a 6-DOF (degrees of freedom) tilting-train simulator. It will be used to verify the tilting-electronics and tilting-control algorithm that are to be applied to the Korean tilting train. It is composed of 6 electrically driven actuators, a track generation system, a graphic user interface, and a visualization system with a 1600-mm-diameter dome screen. Each system shares the data by means of Ethernet network in real time. In this study, a train model of 9-DOF with a force generation system to tilt the train body has been used. Dynamic analysis for the straight track running and curve negotiation of a railway vehicle can be performed in the model. A verification study for the application of the model to the simulator has been conducted on curving tracks with different radii.  相似文献   

6.
This paper presents the development of a modal control strategy for the active steering of solid axle railway vehicles and reveals benefits of actively stabilising the wheelsets of a railway vehicle. A modal decomposition is applied to a 2-axle railway vehicle to de-couple its body lateral and yaw motions and hence to allow more detailed analysis of the vehicle behaviour and more robust design of active controllers. Independent controllers for the two motions are developed based on the two de-coupled modes. Parameter variations such as creep coefficients and wheelset conicity are taken into account in the design process to guarantee a robust design. The study shows that, compared to a passive vehicle, the vehicles with actively steered wheelsets not only perform much better on a curved track, but also improve the ride quality on straight track. Computer simulations are used in the study to verify the development of the controllers and assess the system performance with the control scheme proposed.  相似文献   

7.
Fully active ground vehicle suspensions which completely replace the passive spring and damper elements with a force generating actuator have required a significant amount of power. Alternative systems which retain compliant elements to handle high frequency isolation but include active elements to control the vehicle body attitude have been developed to reduce the power requirements. These suspensions are called “low bandwidth” or “fast load leveler” systems and they often incorporate semi-active dampers which produce high frequency controllable forces with low power requirements. Here, two contrasting attitude control systems are studied to show that actuator power can be significantly reduced if the actuator is used to vary a lever ratio instead of being used to compress the suspension spring directly. Both types of systems have been successfully implemented in prototype form. Bond graphs for idealized versions of the suspensions show clearly the significant differences in actuator power and energy requirements even though the abstract mathematical structures of the two systems are remarkably similar. Computer simulations confirm the analytical results.  相似文献   

8.
The active lateral suspension (ALS) of a train consists of either active or semi-active technologies. However, such an active system on a real railway vehicle is not easy to test because of cost and time. In this study, a hardware-in-the-loop simulation (HILS) system is developed to test the ALS. To this end, the dynamic model of a railway vehicle is equipped with the actuator, two bogies and four-wheel sets, and the ALS is used. The proposed HILS system consists of an alternating current servo motor connected to a ball-screw mechanism and a digital control system. The digital control system implements the dynamic model and the control algorithm. The design and manufacture of the HILS system are explained in detail. Both the passive damper and the magneto-rheological (MR) fluid damper are tested using the HILS system, where the sky-hook control algorithm was applied for the MR fluid damper. Experimental results show that the proposed HILS system can be effectively used for the performance estimation of the ALS.  相似文献   

9.
In this paper, the semi-active suspension system for railway vehicles based on the controlled (MR) fluid dampers is investigated, and compared with the passive on and passive off suspension systems. The lateral, yaw, and roll accelerations of the car body, trucks, and wheelsets of a full-scale railway vehicle integrated with four MR dampers in the secondary suspension systems, which are in the closed and open loops respectively, are simulated under the random and periodical track irregularities using the established governing equations of the railway vehicle and the modelled track irregularities in Part I of this paper. The simulation results indicate that (1) the semi-active controlled MR damper-based suspension system for railway vehicles is effective and beneficial as compared with the passive on and passive off modes, and (2) while the car body accelerations of the railway vehicle integrated with semi-active controlled MR dampers can be significantly reduced relative to the passive on and passive off ones, the accelerations of the trucks and wheelsets could be increased to some extent. However, the increase in the accelerations of the trucks and wheelsets is insignificant.  相似文献   

10.
Active damping has been shown to offer increased suspension performance in terms of vehicle isolation, suspension packaging, and road-tire contact force. It can even approximate the performance of full state feedback control without requiring the difficult measurement of tire deflection. Many semi-active damping strategies have been introduced to approximate the response of active damping with the modulation of passive damping parameters. These strategies have typically required a relatively high bandwidth for actuator response. This paper investigates the simulation performance and “frequency response” of two concepts in low-bandwidth semi-active suspension control, one that sets a damping force directly and another that sets the damping resistance. The electronically controlled bandwidth of these actuators is approximately an order of magnitude less than other semi-active devices; high frequency control is handled mechanically. A quarter-car model is studied with the controlled damping replacing both passive and active damping of typical control schemes. Both low-bandwidth damping strategies perform remarkably well compared to both active and high-bandwidth, semi-active damping. In certain dynamic performances, the new semi-active strategies outperform active damping and what the author calls “nominal” semi-active damping.  相似文献   

11.
Abstract

Active damping has been shown to offer increased suspension performance in terms of vehicle isolation, suspension packaging, and road-tire contact force. It can even approximate the performance of full state feedback control without requiring the difficult measurement of tire deflection. Many semi-active damping strategies have been introduced to approximate the response of active damping with the modulation of passive damping parameters. These strategies have typically required a relatively high bandwidth for actuator response. This paper investigates the simulation performance and “frequency response” of two concepts in low-bandwidth semi-active suspension control, one that sets a damping force directly and another that sets the damping resistance. The electronically controlled bandwidth of these actuators is approximately an order of magnitude less than other semi-active devices; high frequency control is handled mechanically. A quarter-car model is studied with the controlled damping replacing both passive and active damping of typical control schemes. Both low-bandwidth damping strategies perform remarkably well compared to both active and high-bandwidth, semi-active damping. In certain dynamic performances, the new semi-active strategies outperform active damping and what the author calls “nominal” semi-active damping.  相似文献   

12.
Solution of the Multiple Wheel and Rail Contact Dynamic Problem   总被引:1,自引:0,他引:1  
An unconventional method for calculating the forces developing in the wheel and rail contact patches of a railway vehicle has been implemented at the New Technology Laboratory of INRETS. It takes into account the elastic deformations of the materials in the Hertzian elliptical contact areas; the possibility of having simultaneously several contact patches on each wheel, is introduced in the simulation of the dynamic phenomena.

The theory is applied for a high speed bogie running on a perfectly straight track.  相似文献   

13.
In this paper, it is aimed to investigate semi-active suspension systems using magnetorheological (MR) fluid dampers for improving the ride quality of railway vehicles. A 17-degree-of-freedom (DOF) model of a full-scale railway vehicle integrated with the semi-active controlled MR fluid dampers in its secondary suspension system is proposed to cope with the lateral, yaw, and roll motions of the car body, trucks, and wheelsets. The governing equations combining the dynamics of the railway vehicle integrated with MR dampers in the suspension system and the dynamics of the rail track irregularities are developed and a linear quadratic Gaussian (LQG) control law using the acceleration feedback is adopted, in which the state variables are estimated from the measurable accelerations with a Kalman estimator. In order to evaluate the performances of the semi-active suspension systems based on MR dampers for railway vehicles, the random and periodical track irregularities are modelled with a uniform state-space formulation according to the testing data and incorporated into the governing equation of the railway vehicle integrated with the semi-active suspension system. Utilising the governing equations and the semi-active controller developed in this paper, the simulation and analysis are presented in Part II of this paper.  相似文献   

14.
Pareto optimisation of bogie suspension components is considered for a 50 degrees of freedom railway vehicle model to reduce wheel/rail contact wear and improve passenger ride comfort. Several operational scenarios including tracks with different curve radii ranging from very small radii up to straight tracks are considered for the analysis. In each case, the maximum admissible speed is applied to the vehicle. Design parameters are categorised into two levels and the wear/comfort Pareto optimisation is accordingly accomplished in a multistep manner to improve the computational efficiency. The genetic algorithm (GA) is employed to perform the multi-objective optimisation. Two suspension system configurations are considered, a symmetric and an asymmetric in which the primary or secondary suspension elements on the right- and left-hand sides of the vehicle are not the same. It is shown that the vehicle performance on curves can be significantly improved using the asymmetric suspension configuration. The Pareto-optimised values of the design parameters achieved here guarantee wear reduction and comfort improvement for railway vehicles and can also be utilised in developing the reference vehicle models for design of bogie active suspension systems.  相似文献   

15.
SUMMARY

An unconventional method for calculating the forces developing in the wheel and rail contact patches of a railway vehicle has been implemented at the New Technology Laboratory of INRETS. It takes into account the elastic deformations of the materials in the Hertzian elliptical contact areas; the possibility of having simultaneously several contact patches on each wheel, is introduced in the simulation of the dynamic phenomena.

The theory is applied for a high speed bogie running on a perfectly straight track.  相似文献   

16.
The randomness of track irregularities directly leads to the random vibration of the vehicle–track systems. To assess the dynamic performance of a railway system in more comprehensive and practical ways, a framework for probabilistic assessment of vehicle-curved track systems is developed by effectively integrating a vehicle–track coupled model (VTCM), a track irregularity probabilistic model (TIPM) with a probability density evolution method (PDEM). In VTCM, the railway vehicle and the curved track are coupled by the nonlinear wheel–rail interaction forces, and through TIPM, the ergodic properties of random track irregularities on amplitudes, wavelengths and probabilities can be properly considered in the dynamic calculations. Lastly, PDEM, a newly developed method for solving probabilistic transmissions between stochastic excitations and deterministic dynamic responses, is introduced to this probabilistic assessment model. Numerical examples validate the correctness and practicability of the proposed models. In this paper, the results of probabilistic assessment are presented to illustrate the dynamic behaviours of a high-speed railway vehicle subject to curved tracks with various radii, and to demonstrate the importance of considering the actual status of wheel–rail contacts and curve negotiation effects in vehicle-curved track interactions.  相似文献   

17.
An adaptive sliding controller is proposed in this article to control the active suspension systems of a quarter-car model with hydraulic actuator. The highly nonlinear actuator dynamics is assumed to have some time-varying uncertainties with unknown bounds. Owing to its time-variant nature, traditional adaptive designs are not feasible. As the variation bounds are not given, the conventional robust controllers cannot be applied either. In this article, we use the function approximation technique to represent the uncertainties with finite combinations of some basis functions, and the Lyapunov method is employed to find update laws for the coefficients of the approximating series. The actuator force can track the desired force generated from the skyhook dynamics with ultimately bounded performance. If a sufficient number of basis functions are used and the approximation error can be ignored, asymptotic convergence performance can be proved. If the bound of the approximation error is available, asymptotic convergence of the output error still can be obtained with some modifications of the proposed control law. Simulation results show that the controller proposed can give significant improvement of ride comfort when compared with the performance of its passive counterpart.  相似文献   

18.
A stochastic mathematical model is developed to evaluate the dynamic behaviours and statistical responses of vehicle–track systems when random system excitations including crosswinds and track irregularities are imposed. In this model, the railway vehicle is regarded as a multi-rigid-body system, the track system is modelled by finite element theory. These two systems are spatially coupled by the nonlinear wheel–rail contact forces and unsteady aerodynamic forces. The high efficiency and accuracy of this stochastic model are validated by comparing to the robust Monte-Carlo method. Numerical studies show that crosswinds have a great influence on the dynamic performance of vehicle–track systems, especially on transverse vibrations. When the railway vehicle initially runs into the wind field, it will experience a severe vibration stage, and then stepping into a relatively steady state where the fluctuating winds and track irregularities will play deterministic roles in the deviations of system responses. Moreover, it is found that track irregularities should be properly considered in the safety assessment of the vehicle even in strong crosswinds.  相似文献   

19.
In order to investigate the effect of curved track support failure on railway vehicle derailment, a coupled vehicle–track dynamic model is put forward. In the model, the vehicle and the structure under rails are, respectively, modelled as a multi-body system, and the rail is modelled with a Timoshenko beam rested on the discrete sleepers. The lateral, vertical, and torsional deformations of the beam are taken into account. The model also considers the effect of the discrete support by sleepers on the coupling dynamics of the vehicle and track. The sleepers are assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed. In the calculation of the coupled vehicle and track dynamics, the normal forces of the wheels/rails are calculated using the Hertzian contact theory and their creep forces are determined with the nonlinear creep theory by Shen et al [Z.Y. Shen, J.K. Hedrick, and J.A. Elkins, A comparison of alternative creep-force models for rail vehicle dynamic analysis, Proceedings of the 8th IAVSD Symposium, Cambridge, MA, 1984, pp. 591–605]. The motion equations of the vehicle/track are solved by means of an explicit integration method. The failure of the components of the curved track is simulated by changing the track stiffness and damping along the track. The cases where zero to six supports of the curved rails fail are considered. The transient derailment coefficients are calculated. They are, respectively, the ratio of the wheel/rail lateral force to the vertical force and the wheel load reduction. The contact points of the wheels/rails are in detail analysed and used to evaluate the risk of the vehicle derailment. Also, the present work investigates the effect of friction coefficient, axle load and vehicle speed on the derailments under the condition of track failure. The numerical results obtained indicate that the failure of track supports has a great influence on the whole vehicle running safety.  相似文献   

20.
This paper presents a method to select the actuator combination in integrated chassis control using Taguchi method. Electronic stability control (ESC), active front and rear steering (AFS/ARS) are used as an actuator, which is needed to generate a control tire force. After computing the control yaw moment in the upper-level controller, it is distributed into the control tire forces, generated by ESC, AFS and ARS in the lower-level controller. In this paper, the weighted pseudo-inverse control allocation (WPCA) with variable weights is used to determine the control tire forces of each actuator. Taguchi method is adopted for sensitivity analysis on variable weights of WPCA in terms of the control performances such as the maneuverability and the lateral stability. For sensitivity analysis, simulation is performed on a vehicle simulation package, CarSim. From sensitivity analysis, the most effective actuator combination is selected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号