首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Braking or traction torque is regarded as an important source of wheelset skid and a potential source of derailment risk that adversely affects the safety levels of train operations; therefore, this research examines the effect of braking/traction torque to the longitudinal and lateral dynamics of wagons. This paper reports how train operations safety could be adversely affected due to various braking strategies. Sensitivity of wagon dynamics to braking severity is illustrated through numerical examples. The influence of wheel/rail interface friction coefficient and the effects of two types of track geometry defects on wheel unloading ratio and wagon pitch are also discussed in the paper.  相似文献   

2.
Dynamic performance, safety and maintenance costs of railway vehicles strongly depend on wheelset dynamics and particularly on the design of wheelset profile. This paper considers the effect of worn wheel profile on vehicle dynamics and the trend of wear in the wheels as a result of the vehicle movements. ADAMS/RAIL is used to build a multi-body system model of the vehicle. The track model is also configured as an elastic body. Measured new and worn wheel profiles are used to provide boundary conditions for the wheel/rail contacts. The fleet velocity profile taken during its normal braking is also used for the simulation. Wear numbers are calculated for different sets of wheels and the results compared with each other. Outcome of this research can be used for modifying dynamic performance of the vehicle, improving its suspension elements and increasing ride quality. It can also be further processed to reach to a modified wheel profile suitable for the fleet/track combination and for improved maintenance of the wheels. A major advantage of the computer models in this paper is the insertion of the wheel surface properties into the boundary conditions for dynamic modelling of the fleet. This is performed by regularly measuring the worn wheel profiles during their service life and by the calculation of the wear rate for individual wheels.  相似文献   

3.
In order to investigate the effect of curved track support failure on railway vehicle derailment, a coupled vehicle–track dynamic model is put forward. In the model, the vehicle and the structure under rails are, respectively, modelled as a multi-body system, and the rail is modelled with a Timoshenko beam rested on the discrete sleepers. The lateral, vertical, and torsional deformations of the beam are taken into account. The model also considers the effect of the discrete support by sleepers on the coupling dynamics of the vehicle and track. The sleepers are assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed. In the calculation of the coupled vehicle and track dynamics, the normal forces of the wheels/rails are calculated using the Hertzian contact theory and their creep forces are determined with the nonlinear creep theory by Shen et al [Z.Y. Shen, J.K. Hedrick, and J.A. Elkins, A comparison of alternative creep-force models for rail vehicle dynamic analysis, Proceedings of the 8th IAVSD Symposium, Cambridge, MA, 1984, pp. 591–605]. The motion equations of the vehicle/track are solved by means of an explicit integration method. The failure of the components of the curved track is simulated by changing the track stiffness and damping along the track. The cases where zero to six supports of the curved rails fail are considered. The transient derailment coefficients are calculated. They are, respectively, the ratio of the wheel/rail lateral force to the vertical force and the wheel load reduction. The contact points of the wheels/rails are in detail analysed and used to evaluate the risk of the vehicle derailment. Also, the present work investigates the effect of friction coefficient, axle load and vehicle speed on the derailments under the condition of track failure. The numerical results obtained indicate that the failure of track supports has a great influence on the whole vehicle running safety.  相似文献   

4.
A new method for wheel–rail multi-point contact is presented in this paper. In this method, the first- and the second-order derivatives of the wheel–rail interpolation distance function and the elastic wheel–rail virtual penetration are used to determine multiple contact points. The method takes account of the yaw angle of the wheelset and allows the identification of all possible points of contact between wheel and rail surfaces with an arbitrary geometry. Static contact geometry calculations are first carried out using the developed method for both new and worn wheel profiles and with a new rail profile. The validity of the method is then verified by simulations of a coupled vehicle and track system dynamics over a small radius curve. The simulation results show that the developed method for multi-point contact is efficient and reliable enough to be implemented online for simulations of vehicle–track system dynamics.  相似文献   

5.
A classification of wheel flats according to the different stages of their growth is given, along with the characteristic features of the dynamic wheel–rail interaction for each category. Mathematical expressions and frequency spectra of the corresponding wheel mass trajectories are derived. Difference is made between the subcritical and the transcritical speed regime. A criterion is derived for contact loss for worn flats. Simulations show that the dynamic wheel–rail interaction is governed by the track stiffness for low train speeds or long flat lengths; for high speeds and/or short flat lengths the interaction is governed by the inertial properties of the wheel and the rail. For a given flat geometry, nonlinearities in the relationship between the impact magnitude and the train speed occur in the stiffness-dominated speed domain, whereas this relationship is approximately linear in the inertia-governed domain. In the latter domain, the impact magnitude is found to be linearly dependent upon the maximum trajectorial curvature or inversely linearly dependent on the minimum circumferential wheel tread curvature. The above relationships are valid for the subcritical speed regime, in which no contact loss occurs. Different contributions from the literature are compared with respect to the established relationship between impact magnitude and speed. Significant differences are found, due to insufficiently defined parameters and conditions. Conditions are derived for a consistent application of the so-called equivalent rail indentation in experiments with wheel flats, and the indirect strain registration method for measuring dynamic wheel–rail contact forces is reviewed.  相似文献   

6.
In particular locations of the high-speed track, the worn wheel profile matched up with the worn rail profile will lead to an extremely high-conicity wheel–rail contact. Consequently, the bogie hunting instability arises, which further results in the so-called carbody shaking phenomenon. In this paper, the carbody elastic vibrations of a high-speed vehicle in service are firstly introduced. Modal tests are conducted to identity the elastic modes of the carbody. The ride comfort and running safety indices for the tested vehicle are evaluated. The rigid–flexible coupling dynamic model for the high-speed passenger car is then developed by using the FE and MBS coupling approach. The rail profiles in those particular locations are measured and further integrated into the simulation model to reproduce the bogie hunting and carbody elastic vibrations. The effects of wheel and rail wear on the vehicle system response, e.g. wheelset bifurcation graph and carbody vibrations, are studied. Two improvement measures, including the wheel profile modification and rail grinding, are proposed to provide possible solutions. It is found that the wheel–rail contact conicity can be lowered by decreasing wheel flange thickness or grinding rail corner, which is expected to improve the bogie hunting stability under worn rail and worn wheel conditions. The carbody elastic vibrations caused by bogie hunting instability can be further restrained.  相似文献   

7.
Wheel flat is one kind of railway train wheelset defects. It has great influence on wheel/rail dynamics and damages. In most of the presented studies, wheel/rail impact velocity or rolling radius variation of the wheel because of flat spot was taken into account to study the wheel/rail impact dynamics. In this paper, a three-dimensional wheel flat model considering the length, width and depth of the flat spot is established. Including the wheel rotation and wheel/rail contact geometry, a high-speed vehicle–rail coupling system dynamics model is developed to investigate the effect of the wheel flat on the wheel/rail dynamics. With time integration method of the models, the impact dynamics of the wheel/rail system with three types of flat width and five kinds of flat length are obtained. The results show that the width, the length of the wheel flat and the width/length ratio have a great influence on the wheel/rail impact dynamics. The wheel/rail impact dynamics of the flat with large width is more severe than with small width as the flat length is fixed. When a flat spot occurs, the permissible length of the wheel defect, needless to action, is 25?mm in maximum. The speed safety domain with three kinds of flat width/length ratio of a vehicle is obtained according to the wheel/rail vertical force limitation.  相似文献   

8.
The effect of unsupported sleepers on the dynamic behaviour of a railway track is studied based on vehicle–track dynamic interaction theory, using a model of the track as a Timoshenko beam supported on a periodic elastic foundation. Considering the vehicle's running speed and the number of unsupported sleepers, the track dynamic characteristics are investigated and verified in the time and frequency domains by experiments on a 1:5 scale model wheel–rail test rig. The results show that when hanging sleepers are present, leading to a discontinuous and irregular track support, additional wheel–rail interaction forces are generated. These forces increase as further sleepers become unsupported and as the vehicle's running speed increases. The adjacent supports experience increased dynamic forces which will lead to further deterioration of track quality and the formation of long wavelength track irregularities, which worsen the vehicles’ running stability and riding comfort. Stationary transfer functions measurements of the dynamic behaviour of the track are also presented to support the findings.  相似文献   

9.
A gear transmission system is a key element in a locomotive for the transmission of traction or braking forces between the motor and the wheel–rail interface. Its dynamic performance has a direct effect on the operational reliability of the locomotive and its components. This paper proposes a comprehensive locomotive–track coupled vertical dynamics model, in which the locomotive is driven by axle-hung motors. In this coupled dynamics model, the dynamic interactions between the gear transmission system and the other components, e.g. motor and wheelset, are considered based on the detailed analysis of its structural properties and working mechanism. Thus, the mechanical transmission system for power delivery from the motor to the wheelset via gear transmission is coupled with a traditional locomotive–track dynamics system via the wheel–rail contact interface and the gear mesh interface. This developed dynamics model enables investigations of the dynamic performance of the entire dynamics system under the excitations from the wheel–rail contact interface and/or the gear mesh interface. Dynamic interactions are demonstrated by numerical simulations using this dynamics model. The results indicate that both of the excitations from the wheel–rail contact interface and the gear mesh interface have a significant effect on the dynamic responses of the components in this coupled dynamics system.  相似文献   

10.
This paper presents the locomotive traction controller performance with respect to the track wear under different operation conditions. In particular, an investigation into the dynamic response of a locomotive under changing wheel–rail friction conditions is performed with an aim to determine the effect of controller setting on track wear. Simulation using a full-scale longitudinal–vertical locomotive dynamic model shows that the appropriately designed creep threshold, controller, settings can effectively maintain a high tractive effort while avoiding excessive rail damage due to wear, especially during acceleration under low speed.  相似文献   

11.
The coupled vehicle/track dynamic model with the flexible wheel set was developed to investigate the effects of polygonal wear on the dynamic stresses of the wheel set axle. In the model, the railway vehicle was modelled by the rigid multibody dynamics. The wheel set was established by the finite element method to analyse the high-frequency oscillation and dynamic stress of wheel set axle induced by the polygonal wear based on the modal stress recovery method. The slab track model was taken into account in which the rail was described by the Timoshenko beam and the three-dimensional solid finite element was employed to establish the concrete slab. Furthermore, the modal superposition method was adopted to calculate the dynamic response of the track. The wheel/rail normal forces and the tangent forces were, respectively, determined by the Hertz nonlinear contact theory and the Shen–Hedrick–Elkins model. Using the coupled vehicle/track dynamic model, the dynamic stresses of wheel set axle with consideration of the ideal polygonal wear and measured polygonal wear were investigated. The results show that the amplitude of wheel/rail normal forces and the dynamic stress of wheel set axle increase as the vehicle speeds rise. Moreover, the impact loads induced by the polygonal wear could excite the resonance of wheel set axle. In the resonance region, the amplitude of the dynamic stress for the wheel set axle would increase considerably comparing with the normal conditions.  相似文献   

12.
Traction or braking operations are usually applied to trains or locomotives for acceleration, speed adjustment, and stopping. During these operations, gear transmission equipment plays a very significant role in the delivery of traction or electrical braking power. Failures of the gear transmissions are likely to cause power loses and even threaten the operation safety of the train. Its dynamic performance is closely related to the normal operation and service safety of the entire train, especially under some emergency braking conditions. In this paper, a locomotive–track coupled vertical–longitudinal dynamics model is employed with considering the dynamic action from the gear transmissions. This dynamics model enables the detailed analysis and more practical simulation on the characteristics of power transmission path, namely motor–gear transmission–wheelset–longitudinal motion of locomotive, especially for traction or braking conditions. Multi-excitation sources, such as time-varying mesh stiffness and nonlinear wheel–rail contact excitations, are considered in this study. This dynamics model is then validated by comparing the simulated results with the experimental test results under braking conditions. The calculated results indicate that involvement of gear transmission could reveal the load reduction of the wheelset due to transmitted forces. Vibrations of the wheelset and the motor are dominated by variation of the gear dynamic mesh forces in the low speed range and by rail geometric irregularity in the higher speed range. Rail vertical geometric irregularity could also cause wheelset longitudinal vibrations, and do modulations to the gear dynamic mesh forces. Besides, the hauling weight has little effect on the locomotive vibrations and the dynamic mesh forces of the gear transmissions for both traction and braking conditions under the same running speed.  相似文献   

13.
Vehicle–track interaction at railway crossings is complex due to the discontinuity of the crossings. In this study, the effect of the local crossing geometry, the track alignment, and the wheel profiles on the wheel transition behaviour is investigated using the multi-body system software package VI-Rail. The transition behaviour is evaluated based on the location of the transition point along the crossing (and the location of impact), the contact pressure and the energy dissipation during the wheel–rail contact. A detailed parametric study of the crossing geometry has been performed, through which the most effective parameters for defining the crossing geometry are identified. These parameters are the cross-sectional shape of the nose rail, which can be tuned by one variable, and the vertical distance between the top of the wing rail and the nose rail. Additionally, a parametric study on the interaction influence of the crossing geometry, the track alignment and the wheel profile is performed using the design of experiments method with a two-level full factorial design. The longitudinal height profile of the crossing and the wheel profile are the most significant factors.  相似文献   

14.
15.
The sleeper-passing impact has always been considered negligible in normal conditions, while the experimental data obtained from a High-speed train in a cold weather expressed significant sleeper-passing impacts on the axle box, bogie frame and car body. Therefore, in this study, a vertical coupled vehicle/track dynamic model was developed to investigate the sleeper-passing impacts and its effects on the dynamic performance of the high-speed train. In the model, the dynamic model of vehicle is established with 10 degrees of freedom. The track model is formulated with two rails supported on the discrete supports through the finite element method. The contact forces between the wheel and rail are estimated using the non-linear Hertz contact theory. The parametric studies are conducted to analyse effects of both the vehicle speeds and the discrete support stiffness on the sleeper-passing impacts. The results show that the sleeper-passing impacts become extremely significant with the increased support stiffness of track, especially when the frequencies of sleeper-passing impacts approach to the resonance frequencies of wheel/track system. The damping of primary suspension can effectively lower the magnitude of impacts in the resonance speed ranges, but has little effect on other speed ranges. Finally, a more comprehensively coupled vehicle/track dynamic model integrating with a flexible wheel set is developed to discuss the sleeper-passing-induced flexible vibration of wheel set.  相似文献   

16.
A three-dimensional dynamic model of crashed vehicles coupled with moving tracks is developed to research the dynamic behaviour of the train front end collision on tangent tracks. The three-dimensional dynamic model consists of a crashed vehicle model, moving track models, a simple wheel–rail contact model, a velocity-based coupler model and the model of energy absorption and anti-climbing devices. The vector method dealing with the nonlinear wheel–rail geometry is put forward in the paper. The developed model is applicable in the scope that central collisions occur on tangent tracks at low speeds. The examples of the vehicle impacting with a rigid wall and the train front end collision are carried out to obtain the dynamic responses of vehicles. The overriding issue is studied on the basis of the wheel rise in train collisions. The results show that the second bogie of the first colliding vehicle possesses the maximal wheel rise. The wheel rise increases with the increase of vehicles. However, the number of vehicles has tiny influence on the overriding in train collisions at low speeds. On the contrary, the impact speed has significant influence on the overriding in train collisions. The wheel rise increases rapidly if the impact speed is close to the critical speed of overriding. The large wheel rise is principally generated by the great coupler force related to the rigid impact in the axial direction.  相似文献   

17.
This work describes an analytical approach to determine what degree of accuracy is required in the definition of the rail vehicle models used for dynamic simulations. This way it would be possible to know in advance how the results of simulations may be altered due to the existence of errors in the creation of rolling stock models, whilst also identifying their critical parameters. This would make it possible to maximise the time available to enhance dynamic analysis and focus efforts on factors that are strictly necessary. In particular, the parameters related both to the track quality and to the rolling contact were considered in this study. With this aim, a sensitivity analysis was performed to assess their influence on the vehicle dynamic behaviour. To do this, 72 dynamic simulations were performed modifying, one at a time, the track quality, the wheel–rail friction coefficient and the equivalent conicity of both new and worn wheels. Three values were assigned to each parameter, and two wear states were considered for each type of wheel, one for new wheels and another one for reprofiled wheels. After processing the results of these simulations, it was concluded that all the parameters considered show very high influence, though the friction coefficient shows the highest influence. Therefore, it is recommended to undertake any future simulation job with measured track geometry and track irregularities, measured wheel profiles and normative values of the wheel–rail friction coefficient.  相似文献   

18.
Wheel–rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel–rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel–rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional finite element (FE) model for the impact analysis induced by the wheel flat is developed by the use of the FE analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this FEA and they are important for track engineers to improve their understanding of the design and maintenance of the track system.  相似文献   

19.
The hunting motion of a passenger coach is investigated using a multibody system in which the wheelsets and the rails can be modelled as flexible bodies. By comparing the results for different model variants, in which the structural flexibilities of the wheelsets and of the rails are either taken into account or neglected, the impact of the flexibilities is analysed. It turns out that the flexibilities of both the wheelsets and the rails have a significant impact on the hunting behaviour by increasing the lateral motions of the wheelsets and lowering the critical speed. In order to investigate the impact of the flexibilities under different operating conditions, the calculations are carried out for track geometries using different rail profiles (60E1, 60E2) and different rail cants (1:40, 1:20) and for different values for the friction coefficient (0.25…0.4) at the wheel–rail contact. The results show that the influence of the flexibilities is the strongest for high lateral forces, which occur e.g. for contact geometries leading to high hunting frequencies and for high values of the friction coefficient. The results also show in some cases a strong impact of the flexibilities on the position of the wheel–rail contact on the running surface of the rail, which is of particular interest with respect to wear simulation.  相似文献   

20.
Railway local irregularities are a growing source of ground-borne vibration and can cause negative environmental impacts, particularly in urban areas. Therefore, this paper analyses the effect of railway track singular defects (discontinuities) on ground vibration generation and propagation. A vehicle/track/soil numerical railway model is presented, capable of accurately predicting vibration levels. The prediction model is composed of a multibody vehicle model, a flexible track model and a finite/infinite element soil model. Firstly, analysis is undertaken to assess the ability of wheel/rail contact models to accurately simulate the force generation at the wheel/rail contact, in the presence of a singular defect. It is found that, although linear contact models are sufficient for modelling ground vibration on smooth tracks, when singular defects are present higher accuracy wheel/rail models are required. Furthermore, it is found that the variation in wheel/rail force during the singular defect contact depends on the track flexibility, and thus requires a fully coupled vehicle/track/foundation model. Next, a parametric study of ground vibrations generated by singular rail and wheel defects is undertaken. Six shapes of discontinuity are modelled, representing various defect types such as transition zones, switches, crossings, rail joints and wheel flats. The vehicle is modelled as an AM96 train set and it is found that ground vibration levels are highly sensitive to defect height, length and shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号