首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以反转六连杆轮式装载机ZL50G为样机,运用ADAMS软件建立样机的三维实体模型,对轮式装载机的工作装置进行动态载荷分析,为轮式装载机工作装置的研究提供一种可靠的方法.分析结果为轮式装载机工作装置的设计与优化提供了理论依据.  相似文献   

2.
轮式装载机在工作区域行驶时,避障过程频繁,以往的避障轨迹规划未考虑整车转向半径约束和车速变化,也较少考虑整车在动力学模型条件下的轨迹跟踪性能。针对上述情况,以自动驾驶轮式装载机为对象,基于最优快速随机扩展树算法(RRT*),考虑车身膨胀圆个数,生成全局最优避障路径,以整车最小稳定转向半径为约束,利用CC-Steer算法对避障路径进行平滑处理,采用路径-速度分解算法规划满足整车在加速、匀速和减速状态下的避障行驶轨迹。基于整车动力学模型,考虑行驶过程中的横向位置偏差和航向角偏差,并将整车动力传动系统视为1阶惯性环节,构建装载机动力学状态空间方程。以加速度和铰接角为控制输入,以车速、横向位置偏差和航向角偏差为控制输出,建立整车动力学预测模型,以加速度、铰接角和车速为约束条件,将目标函数转换为二次规划问题,建立满足装载机在工作区域避障的模型预测轨迹跟踪控制系统。以规划的非匀速行驶避障轨迹为目标,利用构建的模型预测轨迹跟踪系统,进行自动驾驶轮式装载机的轨迹跟踪仿真。研究结果表明:所提方法能够很好地控制自动驾驶轮式装载机从初始位姿驶向目标位姿,实现整车在工作区域的避障过程,且在避障过程中满足整车的约束要求,保证整车在轨迹跟踪过程中的安全稳定性能。  相似文献   

3.
轮式装载机行驶中振动问题的分析与仿真计算   总被引:3,自引:0,他引:3  
建立了轮式装载机三自由度动力学模型 ,在推导计算公式的基础上编制了仿真计算程序 ,通过实例进行了动态模拟计算 ,分析了轮式装载机的振动特性  相似文献   

4.
SUMMARY

Ride dynamic behaviour of a typical high-speed tracked vehicle, such as a conventional military armoured personnel carrier (APC) negotiating rough off-road terrains, is studied through computer simulations and field tests. A comprehensive ride dynamic simulation model is developed, assuming constant forward vehicle speed and non-deformable terrain profile. The ride model includes dynamic track load and wheel/track-terrain interaction. Dynamic track load is modeled in view of track belt stretching and initial track tension, whereas an equivalent damper and continuous radial spring formulation is employed to model wheel/track-terrain interaction. Field testing of a APC subjected to discrete half round obstacles of various radii, a sinusoidal course, a random course, and a Belgian Pave\ is carried out for various vehicle configurations and speeds. Computer simulation results are validated against field measured results. The comparison of measured and predicted results shows generally good agreement.  相似文献   

5.
为准确方便地分析装载机工作装置性能设计的好坏,在多体动力学软件ADAMS中建立了装载机工作装置的刚柔耦合仿真模型和性能分析所需要的测量函数。分别对其平移性、自动放平性、连杆机构的动力性、举升机构的举升性、卸料性以及传动性进行了仿真分析,对机构的性能优劣进行了判断。仿真结果与实际工作情况基本一致,建模及分析方法对其他类似机构的仿真研究有参考意义。  相似文献   

6.
为编制轮式装载机载荷谱、确定装载机传动系疲劳寿命,测试了ZL50轮式装载机传动系统的扭矩载荷,采用线性拟合方法标定扭矩真值,经滤波与剔除异常峰值处理,确定信号低通滤波频率为1Hz,获得符合装载机工作实际的纯净随机载荷时间历程  相似文献   

7.
A three-dimensional (3-D) explicit dynamic finite element (FE) model is developed to simulate the impact of the wheel on the crossing nose. The model consists of a wheel set moving over the turnout crossing. Realistic wheel, wing rail and crossing geometries have been used in the model. Using this model the dynamic responses of the system such as the contact forces between the wheel and the crossing, crossing nose displacements and accelerations, stresses in rail material as well as in sleepers and ballast can be obtained. Detailed analysis of the wheel set and crossing interaction using the local contact stress state in the rail is possible as well, which provides a good basis for prediction of the long-term behaviour of the crossing (fatigue analysis). In order to tune and validate the FE model field measurements conducted on several turnouts in the railway network in the Netherlands are used here. The parametric study including variations of the crossing nose geometries performed here demonstrates the capabilities of the developed model. The results of the validation and parametric study are presented and discussed.  相似文献   

8.
The transient dynamic characteristic of a tire, which has a significant effect on vehicle handling stability and ride comfort, is difficult to study in detail because of its highly non-linear behavior. In this study, the transient dynamic characteristics of a non-pneumatic wheel, called the mechanical elastic wheel (MEW), which was rolling over a ditch were investigated by the explicit dynamic finite element (FE) method. A three-dimensional FE model of MEW considering geometric nonlinearity, material nonlinearity and large contact deformation between the wheel and the road, was established. For the validation of the accuracy and reliability of the FE model of MEW, the simulation and the experimental results of the radial stiffness and footprint of MEW were compared and analyzed. A dynamic simulation of the validated FE model of MEW rolling over a ditch was conducted using the ABAQUS/Explicit program. The equivalent stress and the contact stress generated during the process of the rolling MEW impacting the ditch were studied in detail. The effect of the rolling speed on the transient dynamic characteristics was also analyzed based on the simulation results. The simulation results could provide guidance for the optimization of the MEW structure and vehicle dynamics.  相似文献   

9.
This paper outlines various analytical approaches of varying complexities to model the wheel in the ride dynamic formulation of off-road tracked vehicles. In addition to a proposed model, four analytical models available in the literature are compared to study their effectiveness in modeling the wheel/track-terrain interaction for ride dynamic evaluation of typical high mobility tracked vehicles. The ride dynamic model used in this study describes the bounce-pitch plane motion of an armoured personnel carrier (Ml 13 APC) traversing over an arbitrary rigid terrain profile at constant speed. The ride dynamic response of the tracked vehicle is evaluated with different wheel models, and compared against field-measured ride data. The relative performance of different wheel models are assessed based on the accuracy of response prediction and associated computational time. The proposed wheel model is found to perform very well in comparison, and is equally applicable for the case of wheeled vehicles.  相似文献   

10.
Vibration accelerations were measured on a compact wheel loader during 11 operations with two drivers and with/without the activated boom suspension system (BSS). Two standards, ISO 2631-1 (1985) and ISO 2631-1 (1997), were used to assess the effect of wheel loader vibration on comfort. The assessment results of ISO 2631-1 (1985) showed that vibration in the frequency range from 4 to 20 Hz in the vertical direction and in the frequency range from 1.6 to 3.15 Hz in the vertical and driving directions plays an important role in comfort assessment. The overall total values of vibration measured on the wheel loader in all operations exceeded the ‘uncomfortable’ boundary specified in ISO 2631-1 (1997). The speed had a larger influence on the vibration intensity than the bucket load, the BSS or the driver biodynamic response during driving. During driving and V-cycle, the difference of vibration intensity with two drivers in the z-direction is larger than that in the x- and y-direction.  相似文献   

11.
为了解决当前公路车桥耦合振动模型中轮胎模型过于简化、车轮-路面接触力与桥梁响应计算结果不够精确的问题,提出了一种精细化轮胎模型.首先基于车辆橡胶轮胎的几何、力学特征,建立了径向弹簧力学模型并进行了理论推导;然后考虑轮胎与路面接触面的刚度分布特征和高速状况下轮胎的惯性力,提出了轮胎接触面分布刚度的计算方法,保证了轮胎接触...  相似文献   

12.
A model of the relationship between a vehicle wheel and the unevenness of the road surface is defined. The wheel is considered to be of circular shape. For a given form of unevenness, the excitation functions are evaluated for the individual subsystems of the dynamic vehicle model having 5 degrees of freedom. The vehicle model traverses the uneven surface at a variable velocity. The model provides for the study of the complex dynamic phenomena which occur between the wheel and the unevenness. The response of the model also includes the dynamic stress on the drive when the wheel passes over the unevenness of the road surface.  相似文献   

13.
SUMMARY

A model of the relationship between a vehicle wheel and the unevenness of the road surface is defined. The wheel is considered to be of circular shape. For a given form of unevenness, the excitation functions are evaluated for the individual subsystems of the dynamic vehicle model having 5 degrees of freedom. The vehicle model traverses the uneven surface at a variable velocity. The model provides for the study of the complex dynamic phenomena which occur between the wheel and the unevenness. The response of the model also includes the dynamic stress on the drive when the wheel passes over the unevenness of the road surface.  相似文献   

14.
车轮防抱死制动滑移模式控制律的理论研究   总被引:3,自引:0,他引:3  
本文通过建立轮制动时的力学模型,运用现代控制理论中的滑移模式控制方法,对汽车防抱死制动控制律进行了理论分析与研究。  相似文献   

15.
For the long heavy-haul train, the basic principles of the inter-vehicle interaction and train–track dynamic interaction are analysed firstly. Based on the theories of train longitudinal dynamics and vehicle–track coupled dynamics, a three-dimensional (3-D) dynamic model of the heavy-haul train–track coupled system is established through a modularised method. Specifically, this model includes the subsystems such as the train control, the vehicle, the wheel–rail relation and the line geometries. And for the calculation of the wheel–rail interaction force under the driving or braking conditions, the large creep phenomenon that may occur within the wheel–rail contact patch is considered. For the coupler and draft gear system, the coupler forces in three directions and the coupler lateral tilt angles in curves are calculated. Then, according to the characteristics of the long heavy-haul train, an efficient solving method is developed to improve the computational efficiency for such a large system. Some basic principles which should be followed in order to meet the requirement of calculation accuracy are determined. Finally, the 3-D train–track coupled model is verified by comparing the calculated results with the running test results. It is indicated that the proposed dynamic model could simulate the dynamic performance of the heavy-haul train well.  相似文献   

16.
为了提高智能汽车的主动安全性,提出3种不同的自动紧急转向避撞跟踪控制方法。首先建立汽车避撞简化模型,对制动、转向及两者相结合的3种不同避撞方式进行对比分析。其次,为深入研究汽车避撞过程中的实际响应,建立包含转向、制动及悬架3个子系统耦合特性的底盘18自由度统一动力学模型,并进行相关试验验证。随后构建智能汽车自动紧急转向避撞控制框架,对五次多项式参考路径和七次多项式参考路径的横摆角速度和横摆角加速度进行对比分析。接着以线性2自由度转向动力学模型为参考对象,对最优控制四轮转向、最优控制前轮转向、前馈与反馈控制相结合的前轮转向3种不同的跟踪控制系统分别进行设计。最后,以汽车底盘18自由度统一动力学模型为研究对象,对上述3种避撞控制系统进行仿真试验对比分析。研究结果表明:与制动避撞相比而言,转向避撞所需的纵向距离有较大降低,随着车速的增加和路面附着系数的越低,效果越明显;七次多项式参考路径比五次多项式参考路径的避撞过渡过程更为平缓,当实际车速与控制器所用车速不一致时,前者避撞性能表现更优;最优四轮转向控制系统在高、低2种不同附着路面都具有较好的避撞效果,最优前轮转向控制系统次之,而前馈与反馈相结合的前轮转向控制系统在低附着路面上则表现出严重的失稳。  相似文献   

17.
The objective of this study is to develop a tool for investigation of wheel tread polygonalization with radial irregularities including 1 to 20 wavelengths around the circumference of the wheel. Therefore, an existing multibody system model for simulation of general three-dimensional train–track interaction (accounting for frequencies up to several kHz) is extended with rolling contact mechanics according to FASTSIM. Furthermore, the model is also modified to allow for general wheel–rail profiles. The numerical model uses the concept of an iteration scheme including simulation of dynamic train–track interaction in the time domain coupled with a long-term wear model. A demonstration example including a bogie of a subway train travelling on a straight track is presented. In the example, an initial wheel out-of-roundness (OOR) is applied to the wheels. This irregularity is based on an amplitude spectrum derived from measurements on new wheels. Simulation results show that the most important wavelength-fixing mechanisms of the wheel OOR are (i) the vertical resonance of the coupled train–track system at approximately 40 Hz (the P2 resonance) and (ii) the frequency region including the lowest vertical track antiresonance at 165 Hz, where the dynamic track stiffness is high. Only a straight track is studied, but the model allows for asymmetric train motion on such a track.  相似文献   

18.
Three-Dimensional Analysis of Train-Rail-Bridge Interaction Problems   总被引:1,自引:0,他引:1  
A vehicle-rail-bridge interaction (VRBI) model for analysing the 3D dynamic interaction between the moving trains and railway bridge was developed. By the dynamic condensation scheme, three types of vehicle-rail interaction (VRI) elements were derived, by which the vehicle and bridge responses, as well as the wheel / rail contact forces, can be computed. Track irregularity of random nature was taken into account. The results indicate that resonance can occur in both the lateral and torsional vibrations of the bridge, as well as in the vertical vibration. Under the crossing of two face-to-face moving trains, the vertical vibration of the bridge is greatly intensified, while the lateral and torsional responses may be increased or reduced, depending on how the two trains cross each other. Finally, two common indices are used to assess the possibility of derailment for trains passing over the bridge at different speeds.  相似文献   

19.
The objective of this study is to develop a tool for investigation of wheel tread polygonalization with radial irregularities including 1 to 20 wavelengths around the circumference of the wheel. Therefore, an existing multibody system model for simulation of general three-dimensional train-track interaction (accounting for frequencies up to several kHz) is extended with rolling contact mechanics according to FASTSIM. Furthermore, the model is also modified to allow for general wheel-rail profiles. The numerical model uses the concept of an iteration scheme including simulation of dynamic train-track interaction in the time domain coupled with a long-term wear model. A demonstration example including a bogie of a subway train travelling on a straight track is presented. In the example, an initial wheel out-of-roundness (OOR) is applied to the wheels. This irregularity is based on an amplitude spectrum derived from measurements on new wheels. Simulation results show that the most important wavelength-fixing mechanisms of the wheel OOR are (i) the vertical resonance of the coupled train-track system at approximately 40 Hz (the P2 resonance) and (ii) the frequency region including the lowest vertical track antiresonance at 165 Hz, where the dynamic track stiffness is high. Only a straight track is studied, but the model allows for asymmetric train motion on such a track.  相似文献   

20.
The numerical wheel wear prediction in railway applications is of great importance for different aspects, such as the safety against vehicle instability and derailment, the planning of wheelset maintenance interventions and the design of an optimal wheel profile from the wear point of view. For these reasons, this paper presents a complete model aimed at the evaluation of the wheel wear and the wheel profile evolution by means of dynamic simulations, organised in two parts which interact with each other mutually: a vehicle's dynamic model and a model for the wear estimation. The first is a 3D multibody model of a railway vehicle implemented in SIMPACK?, a commercial software for the analysis of mechanical systems, where the wheel–rail interaction is entrusted to a C/C++user routine external to SIMPACK, in which the global contact model is implemented. In this regard, the research on the contact points between the wheel and the rail is based on an innovative algorithm developed by the authors in previous works, while normal and tangential forces in the contact patches are calculated according to Hertz's theory and Kalker's global theory, respectively. Due to the numerical efficiency of the global contact model, the multibody vehicle and the contact model interact directly online during the dynamic simulations.

The second is the wear model, written in the MATLAB® environment, mainly based on an experimental relationship between the frictional power developed at the wheel–rail interface and the amount of material removed by wear. Starting from a few outputs of the multibody simulations (position of contact points, contact forces and rigid creepages), it evaluates the local variables, such as the contact pressures and local creepages, using a local contact model (Kalker's FASTSIM algorithm). These data are then passed to another subsystem which evaluates, by means of the considered experimental relationship, both the material to be removed and its distribution along the wheel profile, obtaining the correspondent worn wheel geometry.

The wheel wear evolution is reproduced by dividing the overall chosen mileage to be simulated in discrete spatial steps: at each step, the dynamic simulations are performed by means of the 3D multibody model keeping the wheel profile constant, while the wheel geometry is updated through the wear model only at the end of the discrete step. Thus, the two parts of the whole model work alternately until the completion of the whole established mileage. Clearly, the choice of an appropriate step length is one of the most important aspects of the procedure and it directly affects the result accuracy and the required computational time to complete the analysis.

The whole model has been validated using experimental data relative to tests performed with the ALn 501 ‘Minuetto’ vehicle in service on the Aosta–Pre Saint Didier track; this work has been carried out thanks to a collaboration with Trenitalia S.p.A and Rete Ferroviaria Italiana, which have provided the necessary technical data and experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号