首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以安徽某公路工程膨胀土为研究对象,在保持含水率和干密度不变的情况下,依次将磷尾矿、EPS颗粒、玄武岩纤维按不同比例掺入膨胀土中,基于最佳掺量进行改良土试验,试验结果表明:适量磷尾矿改良膨胀土能有效降低膨胀土的膨胀率,提高膨胀土的抗压强度和剪切强度,掺量为7. 5%时效果最佳。同时对抗剪强度指标分析,粘聚力与掺量成线性关系,内摩擦角与掺量成二次多项式关系; EPS能抑制膨胀土的膨胀性,但会降低膨胀土的抗压强度和延性,掺量为20%最佳;玄武岩纤维对复合改性土抗压强度贡献很小,但能增强其延性;最终得到磷尾矿、EPS和玄武岩纤维最佳掺量分别为7. 5%,20%,0. 4%。  相似文献   

2.
通过对5种不同玄武岩纤维掺量的混合料进行室内试验,以研究玄武岩纤维掺量对改性沥青混合料路用性能的影响。由试验可知,随着纤维掺量的增加,混合料的高温稳定性不断提高,在纤维掺量为0.3%后增幅不断减小;玄武岩纤维的掺入可以提高混合料的低温稳定性,掺量为0.2%时效果最佳;混合料的抗水损能力随玄武岩纤维掺量增加而提高,在掺量为0.5%时达到最大。  相似文献   

3.
在保持含水率和干密度不变的条件下,将风化砂以不同比例掺入膨胀土中,通过击实试验、无荷膨胀试验和三轴试验,研究风化砂改良膨胀土的效果。研究结果表明:最优含水率随掺砂量增加而减小,但最大干密度先增大后减小;随着风化砂掺量增多,膨胀率相应降低;当掺砂量达到40%时,膨胀率降低了6.64%,风化砂能明显抑制膨胀土的膨胀性;膨胀土的主应力峰值随掺砂量的增加先增大后减小,当掺砂量为16%时抗剪强度最大,而黏聚力随掺砂量的增加逐渐减小,内摩擦角先增大后减小,因此确定最佳掺砂量为16%。  相似文献   

4.
为分析工业废渣改良膨胀土填料力学强度的效果,分别向膨胀土中掺入不同比例的钢渣和镁渣,以4%、6%石灰掺量改良膨胀土为对照组,进行室内试验研究。结果表明,膨胀土掺入钢渣或镁渣后,与同掺量石灰改良膨胀土效果相近,改善亲水性和膨胀性,降低塑性指数显著,抗压强度明显提高。钢渣掺量增加1%,钢渣土塑性指数降低8%;镁渣掺量≤4%,镁渣土塑性指数较素膨胀土降低了54%;钢渣或镁渣掺量≥4%,膨胀土自由膨胀率低于临界自由膨胀率;钢渣土和镁渣土前期抗压强度增长快,28d抗压强度至少是90d抗压强度的88%; 4%掺量钢渣或镁渣提高膨胀土抗压强度最佳,且钢渣土和镁渣土水稳定性良好,裂隙性和干湿效应弱化。  相似文献   

5.
为充分研究短切玄武岩掺量和长度对沥青混合料的性能影响,该文通过向混合料掺加0、0.2%、0.35%和0.5%(占混合料质量)的纤维进行马歇尔试验,分析纤维掺量对混合料马歇尔指标的影响及推荐纤维的最佳掺量;在最佳纤维掺量下,通过对掺加3、6、9 mm等不同长度纤维的混合料进行车辙试验、水稳定性试验和低温试验,分析纤维长度对混合料路用性能的影响。试验结果表明:沥青混合料的最佳油石比、稳定度和流值随纤维掺量的增加而先增加后降低,且在0.35%纤维掺量下数值达到最大;空隙率和毛体积密度随纤维掺量增大而分别增大和降低;在0.35%最佳纤维掺量下,纤维沥青混合料的各项性能均得到显著提高,其中掺加6mm纤维的混合料性能最优。  相似文献   

6.
《公路》2015,(5)
以南阳某公路膨胀土为研究对象,将石灰、玄武岩纤维按照不同比例掺入到膨胀土中制取试样,进行击实试验、无侧限抗压强度试验、直剪试验、膨胀力试验。试验结果表明,石灰可以有效降低膨胀土的塑性指数;随着石灰添加量的增加,无侧限抗压强度会出现一个峰值;玄武岩纤维可以有效提高膨胀土的延性;石灰和玄武岩纤维两者共同作用可以有效降低膨胀土的膨胀力,其中石灰起主导作用。  相似文献   

7.
为提高水泥石灰土的力学性质和抗收缩性能,研究了TG土壤固化剂、聚丙烯纤维、玄武岩纤维对水泥石灰土的抗压强度、劈裂强度、抗压回弹模量及收缩性的影响。试验结果表明:在试验掺量范围内,随TG固化剂掺量的增加水泥石灰土的抗压强度增大,而单掺聚丙烯纤维或玄武岩纤维能明显增强水泥石灰土的劈裂强度。TG固化剂与纤维混合添加对水泥石灰土力学和收缩性能的提高幅度高于添加一种材料,尤其是TG固化剂与玄武岩纤维的混掺效果更佳。  相似文献   

8.
采用稻壳灰(RHA)和电石渣(CCR)复合胶凝材料对膨胀土进行改良。通过强度试验确定了RHA和CCR的最佳配比为65∶35。通过对RHA-CCR改良膨胀土试验研究发现,随着RHA-CCR掺量、养护时间和初始含水率的增加,膨胀率与膨胀力显著降低,添加RHA-CCR后无侧限抗压强度显著提高。从强度提高的角度出发,建议RHA-CCR掺量为15%、初始含水率为最佳含水率的1.2倍来改良膨胀土。探讨了RHA-CCR改良膨胀土的作用机理,发现其机理包括置换作用、胶凝反应和离子交换。  相似文献   

9.
合肥某高速公路主要通过的是膨胀土地区,路堤用石灰改良膨胀土填筑。为了指导施工控制填土质量,文章对膨胀土和石灰改良膨胀土的物理特性进行了系统的试验研究。试验表明,石灰能够很好的改善膨胀土的液塑限性质和降低粘粒的含量;同时降低膨胀土的膨胀性。但是灰剂量会随着掺灰龄期而逐渐降低,文章通过标准EDTA滴定试验研究了不同龄期的掺灰率;随着龄期增加灰剂量逐渐变小。掺灰率愈高的土EDTA耗量随龄期的变化与显著,反之亦然。可以通过EDTA标准滴定试验,建立了考虑灰剂量随龄期衰减标准线。  相似文献   

10.
为降低路面的初期损害,确保路面的寿命,可在沥青混合料中掺加玄武岩纤维,基于AC-13C型级配,对混合料掺加不同掺量的玄武岩纤维,并采用马歇尔试验找出各个掺量下的最佳油石比,然后进行高温车辙和低温抗裂试验。结果表明,玄武岩纤维最佳掺量为0.3%,且可显著改善混合料的路用性能。  相似文献   

11.
《公路》2015,(7)
通过对外掺玄武岩纤维的再生沥青混合料进行马歇尔试验,研究玄武岩纤维对再生沥青混合料马歇尔性能的改善效果,分析不同掺量的玄武岩纤维对再生沥青混合料马歇尔试验结果影响的原因,提出玄武岩纤维的掺入对再生沥青混合料的马歇尔试验各项指标的改善存在一个最佳纤维掺量为0.3%,新沥青的掺量为4.5%。试验结果表明,经过玄武岩纤维改善的再生沥青混合料的各项马歇尔指标均能达到普通再生沥青混合料的标准,可以重新利用。研究成果可为玄武岩纤维在再生沥青混合料中的应用提供参考。  相似文献   

12.
为研究玄武岩纤维对沥青混合料路用性能和断裂性能的影响,基于马歇尔试验确定了不同玄武岩纤维掺量下的最佳油石比,并基于此分析纤维掺量对路用性能、老化性能、抗断裂性能的影响规律及其改善效果。结果表明:(1)玄武岩纤维掺量将影响最佳沥青用量,需同时考虑纤维掺量以确定最佳油石比;(2)纤维质量掺量为0.1%时,具有最佳的改善效果,最大可将高温稳定性能、低温抗裂性能、水稳定性能分别提升31.5%~38.4%、24.4%~37.3%、1.2%~5.5%。纤维对老化沥青混合料的高温稳定性的改善程度最佳,尤其是动稳定度,改善程度是其他性能的1.28~15.0倍;其次是低温抗裂性;水稳定性的改善效果最弱。纤维可通过增加沥青混合料的延性,以提高峰值荷载对应的裂纹张开位移,且玄武岩纤维在中温情况下对沥青混合料的抗断裂性能改善效果要高于低温条件,最大可提升21.64%的断裂韧性。  相似文献   

13.
水泥改良膨胀土试验研究   总被引:5,自引:0,他引:5  
通过室内不同水泥掺量比的系列试验,获得了水泥改良膨胀土的自由膨胀率、塑性指数和无侧限抗压强度等指标。分析结果,该地膨胀土改良,8%的水泥为最佳掺量比。  相似文献   

14.
在最佳粉煤灰掺量20%条件下,聚丙烯纤维长度分别取6、12、24mm,以0.25%的增量从零增至1.5%掺加到粉煤灰稳定膨胀土中,利用标准击实试验、无侧限抗压强度、加州承载比和膨胀压力试验评价纤维增强粉煤灰稳定膨胀土路基混合料的特性,根据试验结果确定聚丙烯纤维的最佳长度和最佳掺量分别为12mm、1.0%,并验证了在最佳粉煤灰掺量和最佳纤维掺量及长度下的路基趋于最佳稳定状态。  相似文献   

15.
基于AC-13C连续密级配,通过冻融劈裂试验,研究了不同浓度盐溶液下,0.1%~0.3%掺量情况时聚酯纤维与玄武岩短切纤维对沥青混合料水稳定性的影响情况。研究表明:纤维对沥青混合料的水稳定性具有改善作用,随着聚酯纤维与玄武岩短切纤维掺量的增加,不同盐度环境下沥青混合料的冻融劈裂抗拉强度值先增大后降低,其中在掺量为0.2%时取得最大值。同等条件下,玄武岩短切纤维对沥青混合料水稳定性的改善优于聚酯纤维;随着盐浓度的增加,不同纤维掺量的沥青混合料冻融前后劈裂抗拉强度及强度比均出现下降,但是较之普通沥青混合料,掺加纤维的沥青混合料其抗水性较好。  相似文献   

16.
合安高速公路膨胀土掺石灰试验研究   总被引:6,自引:1,他引:6  
在穿越膨胀土地区的高速公路路基修筑工程中,通常采用统一的掺灰率进行膨胀土性质改良。由于膨胀土工程性质的差别,采用相同的掺灰率处理是不合理的。文章对合安高速公路沿线肥西、庐江和桐城三地区膨胀土进行掺石灰试验研究,探讨掺石灰对膨胀土的胀缩性与强度的影响规律。试验研究结果表明:在膨胀土中掺入一定量的石灰可有效降低膨胀土的胀缩性;土体的最佳含水量随掺灰率的增大而增大,而其最大干密度则随掺灰率的增大而减小;土体的无侧限抗压强度随掺灰率的增加先增大,当达到峰值后,随掺灰率的继续增加而降低,存在一个最佳掺灰率点,肥西、庐江和桐城三地区膨胀土的最佳掺灰率分别为8%、8%和6%。文章最后从膨胀土地质成因角度分析了肥西、庐江与桐城三地区膨胀土工程性质差异的原因,为膨胀土研究提供了新的方法和思路。  相似文献   

17.
唐咸远  李迎春  罗得把 《公路》2015,(2):169-174
为研究膨胀土的化学改良效果,以南宁膨胀土为对象,在分析膨胀土基本工程特性的基础上,分别用石灰、水泥及粉煤灰作为改良剂对3种不同路段膨胀土进行改良试验,通过试验分析各种改良材料对本路段内膨胀土的改良效果及适应性。研究表明:掺石灰对膨胀土强度的增长和胀缩性指标的降低效果显著,当掺量为5%、7%时均能满足CBR值大于3%且胀缩总率小于0.7%的规范要求;掺水泥对增长膨胀土强度效果显著,但对降低胀缩性指标效果较差;掺粉煤灰对增大CBR不明显。  相似文献   

18.
采用正交试验和极差分析法,对低液限粉土进行复掺改性试验,结果表明掺加膨润土能明显改善粉土的密实度,掺量为9%时干密度和回弹模量达到最大值;对低液限粉土进行强度及压缩性复掺改良试验,并通过极差分析计算,确定低液限粉土的最佳改良掺比为水泥4%+水玻璃∶氯化钙=3∶1+石灰4%+聚丙烯纤维0.3%;在复掺配比的基础上进行掺入和未掺入膨润土物理力学参数对比,掺入9%膨润土后粉土的抗弯沉性能更佳,最佳复掺配比为水泥4%+水玻璃∶氯化钙=3∶1+石灰4%+聚丙烯纤维0.3%+膨润土9%。  相似文献   

19.
结合湖北省宜昌市小溪塔至鸦鹊岭一级公路改建工程,风化砂改良膨胀土路基施工项目,对掺入不同比例风化砂的膨胀土进行了直剪试验、无侧限抗压强度试验、CBR试验和回弹模量试验,探讨不同掺砂比例对强度指标的影响及其变化规律.试验研究结果表明,掺砂能改善膨胀土的力学强度性能,掺砂之后的膨胀土的强度指标可以达到路基材料的要求;掺砂对内摩擦角的影响较小,对CBR值的影响较大,黏聚力、无侧限抗压强度和回弹模量随着掺砂比例的改变而改变;随着掺砂比例增大,内摩擦角增大,CBR值增大,黏聚力、无侧限抗压强度和回弹模量先增大后减小;随着掺砂量的增加,内摩擦角增大的趋势先快后慢,CBR值和黏聚力的变化趋势出现波动,无侧限抗压强度和回弹模量的变化趋势由快逐渐趋于平稳.  相似文献   

20.
易志斌 《路基工程》2018,(5):144-148
以膨胀土的收缩性指标为研究对象,探讨工程中利用中粗砂作为膨胀土物理改良材料的可行性。通过对膨胀土掺加不同比例的中粗砂开展收缩试验,分析了中粗砂改良膨胀土的线缩率、体缩率、缩限和收缩系数等4个收缩性指标的变化规律。结果表明:随着中粗砂掺量增加,线缩率、体缩率和收缩系数等3个指标呈一元三次函数关系逐渐减小,当中粗砂掺量不大于10%时变化幅度较大,掺量大于10%时变化幅度较小。缩限随中粗砂掺量增加呈一元四次函数关系变化,当中粗砂掺量不大于10%时缩限随中粗砂掺量增加而减小,掺量大于10%时缩限随中粗砂掺量增加而  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号