首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
道路交叉口具有车辆冲突交织、碰撞风险加剧的交通安全复杂性的特点,而道路信号交叉口中的相序设计是制约降低车辆碰撞风险、提高交叉口安全性的主要瓶颈。文中针对上述问题,以道路交叉口车辆轨迹的不同冲突点和碰撞风险概率作为切入点,提出了不同相序下左转车与直行车不同驾驶行为的碰撞风险模型。根据运动学理论考虑车辆运行特性,运用条件概率的思想求出碰撞概率来表征车辆碰撞风险,从安全的本质出发提出了碰撞风险的表述方法,建立密度函数模型,从而建立基于概率计算的动态碰撞风险模型,通过VISSIM微观仿真软件仿真车辆的运行场景,利用仿真输出的运行数据计算风险值。研究结果表明,根据碰撞风险估计值变化规律可以确定不同相序下不同驾驶行为的碰撞风险预警阈值,而且能较好地反映实际交通安全状况,比较两种相序预警阈值的大小,还可以为信号交叉口相序设计提供定量依据。  相似文献   

2.
针对现有交叉口左转车流与直行车流交叉冲突,车流不连续,运行效率低的问题,选取国外多个城市已经投入使用并取得良好效果的连续流交叉口为分析研究对象。介绍了连续流交叉口基本概念,在连续流交叉口车流组织和信号控制方案的基础上,利用Vissim仿真软件构建了连续流交叉口运行仿真模型,选取车辆延误为评价指标,对连续流交叉口的通行效率进行了评价分析。研究结果表明:随着连续流交叉口主信号交叉口与预信号交叉口间距的不断增加,左转车辆的平均延误没有明显变化,而直行车辆的车均延误缓慢增加;连续流交叉口左转车辆的车均延误较传统交叉口减少25%;直行车辆的车均延误较传统交叉口减少45%。  相似文献   

3.
左转交通流在城市道路交叉口处产生的冲突点最多,合理组织左转交通流能够有效提高交叉口的通行效率.结合交叉口现实情况,提出移位左转放行方法,该方法将左转车道转移至对向车道,实现相对方向直行和左转车辆同时放行,消除交叉口左转产生的交通冲突、减少信号相位数、提高绿信比,从而提高直行车辆乃至整个交叉口的通行效率.针对此方法设计了移位左转交叉口的几何物理模型,进一步提出了一种联动控制算法来判定该方法的适用条件;阐述了该方式下慢行交通组织方法;并通过Vissim微观仿真对满足适用移位左转条件的实例交叉口进行了对比验证.仿真结果表明,设置移位左转后,该实例交叉口主信号总车均延误比现状交叉口主信号总车均延误减小了24.53s,交叉口通行效率得到提高.   相似文献   

4.
为消除平面交叉口左转交通对交叉口的瓶颈作用,采用蝴蝶领结型交叉口交通组织方式,禁止交叉口车辆左转,将左转车流引至次要道路的环岛处进行掉头,将左转车流变成直行车流,并根据车速、道路和交通条件推导了掉头环岛与交叉口的距离、半径和车道宽度的计算模型。经过蝴蝶领结型交叉口交通组织以后,使交叉口的车辆禁止向左行驶,促使冲突点减少且信号控制只需两个相位,能够将交叉口信号灯的利用率提升,对交叉口运行效率具有显著提升效果。  相似文献   

5.
为了使自动驾驶汽车在人机混驾环境下能安全、高效地左转通过无信号交叉口,在借鉴人类驾驶人左转时会对周围车辆驾驶意图进行提前预判的基础上,提出了一种基于周围车辆驾驶意图预测的自动驾驶汽车左转运动规划模型。首先将无信号交叉口处周围车辆的驾驶意图分为左转、右转、直行3种类型,利用相关向量机预测周围车辆驾驶意图,以概率形式输出意图预测结果并实时更新,进一步界定自动驾驶汽车与周围车辆的潜在冲突区域并判断是否存在时空冲突;接着,在充分考虑他车速度、航向及车辆到达冲突区域边界距离的基础上建立基于部分可观测马尔可夫决策过程的自动驾驶汽车左转运动规划模型,生成一系列期望加速度;最后,基于Prescan-Simulink联合仿真平台搭建无信号交叉口仿真场景,对所提左转运动规划方法进行仿真验证,将基于博弈论的运动规划方法、基于人工势场理论的运动规划方法与所提出的方法进行比较,并选取行进比例达到1所用的时间和碰撞次数作为评价指标。研究结果表明:基于相关向量机的驾驶意图预测方法可在自动驾驶汽车到达交叉口之前准确预测出他车驾驶意图;基于部分可观测马尔可夫决策过程的左转运动规划方法能够通过速度调整策略实现人机混驾环境下自动驾驶汽车与周围车辆在无信号交叉口处的交互;不同算法对比效果表明,所提左转运动规划方法在自动驾驶汽车与不同数量周围车辆交互的仿真场景下均可有效避免碰撞事故发生并提高自动驾驶汽车左转通过无信号交叉口的效率。  相似文献   

6.
公路平面信号交叉口左转车道长度设计   总被引:1,自引:0,他引:1  
平面交叉口作为道路系统的一个重要组成部分,其服务水平的好坏对整个道路系统的安全和效率有着重要的影响。因为来自不同方向的车流在此处合流、分流和交叉,其中频繁的左转车辆阻碍直行车流的行驶,降低了交叉口的通行能力,增加了交叉口的延误,并增大交通事故率。如果合理设置左转车道能够有效地将左转车辆从直行车流中分离出来,减小车流速度方差,并降低追尾事故的发生;而左转车道,长度的设计是设置左转车道的关键元素,本文主要是针对信号交叉口选取适当的设计指标建立模型,并通过TSIS软件进行仿真分析,得出专用左转相位下的左转车道排队长度,进而计算出左转车道的设计长度。  相似文献   

7.
赵靖  郑喆  韩印 《中国公路学报》2019,32(3):135-144
为了提高排阵式交叉口这一非常规信号交叉口的运行效率,对其延误和最佳周期进行分析。首先针对先直行后左转、先左转后直行和直行左转交替通行3种信号相位相序,通过对排序区内车辆驶入、驶离、受信号控制阻滞等车流运行情况的分析,构建可反映排阵式交叉口车辆2次停车启动的车均延误计算模型。通过仿真对比可知,左转和直行延误估算误差均在10%范围内。在此基础上,以交叉口总延误最小为目标,考虑清空时长、主、预信号相位差、绿灯时长等约束条件,建立排阵式交叉口最佳周期理论模型。针对不同排阵式控制进口道数量设置的情况,通过对最佳周期的拟合分析,建立最佳周期简化模型。与理论模型相比,最佳周期简化模型的拟合优度在0.935~0.972范围内。通过模型对比和案例分析,对最佳周期简化模型的优化效益和稳定性进行检验。研究结果表明:在非饱和状态下,建立的最佳周期模型的平均误差和均方误差分别为2.13%和2.39%,均小于Webster模型和HCM2010模型的计算结果,具有较高的准确性和稳定性,案例中可降低车均延误36.46%;相较于传统信号控制交叉口,建议排阵式交叉口采用较小的周期时长,且当关键流量比大于0.6时尤为显著,分析中发现最佳周期减小14.53%~34.65%。  相似文献   

8.
十字环形交叉口绿灯间隔时间计算方法研究   总被引:6,自引:1,他引:6  
以十字环形交叉口内部各股车流的潜在冲突点和车辆启动形成的启动波为依据,将环形交叉口左转二次控制的绿灯间隔时间转化为环道左转与本相直行之间的绿灯间隔时间、环道左转与下一相位绿灯启亮时差以及两直行相位绿灯间隔时间的组合,提出各个绿灯启亮的时间差以及绿灯间隔时间的计算方法,并将该方法应用于实例计算。论文的研究成果对提高十字环形交叉口左转二次控制效率和提高交叉口运行的安全性具有重要的意义和实用价值。  相似文献   

9.
设置有路中式公交专用道的交叉口进口道存在因公交与其他车辆两股平行车流在路口同时左转、直行和右转而形成的多路交织现象,传统信号控制方案已无法消除这类交叉口相位放行造成的交织冲突问题。为解决该问题,设计了一种借用公交专用道左转的新型交叉口,规定了各流向车辆的运行规则,同时设计了主信号与预信号相位方案及相互协调配时关系。具体来说,根据公交直行车辆和其他左转、直行车辆的到达-驶离图式,分别建立各流向不同情况下车辆的延误与停车次数计算方法,以交叉口车均延误与车均停车次数加权的当量费用最小为目标,建立交叉口信号配时优化模型。为验证该优化控制策略的有效性,结合算例对传统控制方案和优化控制方案进行比较,并分析等待区长度对车辆排队演化过程的影响,确定优化方案适用场景。结果表明:相对于传统方案,优化方案增加了交叉口的通行能力,使得车均当量费用下降比例达到了32.3%;参数灵敏度分析显示,主信号等待区长度宜设置为80 m。所提出的控制策略通过借用公交专用道左转,提高了交叉口的利用效率,最大限度地降低了对公交优先策略实施的影响,能够完全消除设置有路中式公交专用道交叉口相位放行中的交通交织冲突现象,以保证交叉口行车安全。  相似文献   

10.
交叉口是整个城市的交通咽喉,而调头车辆和左转车流的合理组织又控制着整个交叉口的交通运行质量。调头车辆对左转车辆和对向直行车辆的交通干扰较大,调头车道的合理设置,对提高交叉口的通行能力和服务水平有重要意义。分析了调头交通需求产生的原因,提出了交叉口调头的三种形式,并分析了各种形式的优缺点,最后探讨了调头车道的设计,有关经验可供相关专业人员参考。  相似文献   

11.
为实现车辆自主避撞,改善道路交通安全状况,提出一种基于线性路径跟踪控制的换道避撞控制策略。为实时确定制动和换道时机,获取跟车状态下自车和前车车速、加速度、相对距离以及驾驶人制动反应时间计算制动安全距离和换道安全距离,并在此基础上分别引入制动危险系数B和换道危险系数S评估制动与换道风险,使得车辆发生追尾碰撞的危险程度和主动干预阈值更直观。根据车辆期望横向加速度和期望横向位移的变化特性,采用5次多项式法规划符合驾驶人换道避撞特性的避撞路径。为保证换道避撞过程中驾驶人的安全舒适,采用最大横向加速度约束换道避撞轨迹。为实现对换道避撞路径的线性跟踪控制,保证车辆的操纵稳定性和横摆稳定性,基于车辆稳态动力学模型建立前馈控制,结合线性反馈控制消除换道路径的位置和横摆角偏差,修正参考路径实现直车道场景追尾避撞控制。仿真和实车交叉验证试验表明:根据车辆期望横向加速度和期望横向位移建立的符合驾驶人换道避撞特性的五次多项式换道路径与驾驶人实际换道避撞路径基本吻合,结合碰撞时间和车间时距的制动避撞控制策略能够在保证车辆行驶安全舒适性的同时有效避免车辆追尾碰撞,减少交通事故的发生。  相似文献   

12.
针对信号交叉口许可相位运行期间直行车与左转车交通冲突严重、通行效率低下的问题,提出一种针对许可相位的新式左转待转区设计方法,设计该组织模式下的信号相位方案并分析了设置左转待转区前后的交通冲突情况。建立新式左转待转区设置后的延误模型,以车均延误最小为优化目标,建立改进后交叉口信号控制参数优化模型,并给出求解算法。以哈尔滨市融江路-群力第六大道交叉口为例,VISSIM仿真表明:尽管提出的方法对次要道路中左转车的延误和停车率不利,但总的车均延误在下降,特别是主路相位延误下降更明显,说明所提方法可行、有效。进一步分析交通流量规模、左转车比例和左转待转区容量等因素对设置左转待转区前后次要道路车均延误的影响,结果表明:当每方向左转待转区容量固定不变时,红灯期间到达的左转车辆数越多,所提方法适用的次要道路交通流量临界点越高,且随着次要道路交通流量的增加,所提方法适用的临界左转比例在下降;在相同交通条件下,每个方向左转待转区容量越大,车均延误就越小,说明每个方向左转待转区容量越大,所提方法的效果越明显。该方法有助于改善含许可相位的信号交叉口交通安全和通行效率。  相似文献   

13.
在复杂动态的城市道路环境中,不同的交通参与者之间会不可避免地产生时间或空间上的冲突。针对该问题,对智能驾驶车辆在城市交叉口左转时潜在的冲突行为进行分析并建立决策模型。考虑了车辆运动模式并基于高斯过程回归模型(GPR)建立了直行车辆长时轨迹预测模型,结合轨迹预测提出了基于冲突消解的智能驾驶车辆决策流程(模型)和考虑多因素的驾驶动作选择方法。基于Matlab/Simulink&Prescan搭建仿真验证平台,联合真实数据对算法进行验证。结果表明,单车场景下,决策模型能够以90%的成功率引导无人驾驶车辆完成通行任务。  相似文献   

14.
左转车是信号控制交叉口产生冲突点最多的车辆,因此对左转交通流的延误分析是研究交叉口延误的基础。文中在研究改进的HCM延误模型基础上,考虑了左转车流驶离交叉口时非机动车驶入机动车道从而造成左转车流的跟驰延误,结合我国交叉口左转交通流的特性,建立了一个两相位信号交叉口左转交通流延误模型,并通过实例说明了此模型的有效性和适用性。  相似文献   

15.
为解决单开口式(即仅有1个预信号开口)逆流左转车道(即通过预信号控制动态借用的出口车道)的长度与左转交通需求匹配效果不佳的问题,通过对单开口式逆流左转车道的设计进行分析,提出1种双开口式(即设置2个预信号开口)逆流左转车道的设计及控制方法。结合逆流左转车道的车辆运行规则,分析单开口式、双开口式逆流左转车道上车辆排队行为特征差异,构建逆流左转车道通行能力计算模型和延误计算模型。考虑主预信号协调控制、饱和度、交通波传递等约束条件,以车均延误最小为优化目标,采用0-1变量表示各个预信号开口是否启用,将常规设计、单开口式、双开口式信号配时整合到1个统一的混合整数非线性规划优化模型中,并给出逆流左转车道长度的设计依据。通过案例分析发现:①在逆流左转车道长度为80 m时,交叉口通行能力提升幅度最大;②当通行能力满足需求时,逆流左转车道长度越短,交叉口延误降低越明显;③若为保证通行能力而采用较长的逆流左转车道时,双开口式逆流左转车道通行效率优于单开口式;④综合考虑延误、通行能力等因素,单开口式逆流左转车道长度宜设置为40~60 m,而双开口式宜设置为80 m左右;⑤双开口式逆流左转车道可根据需要选择是否启用每个预信号开口,应用较为灵活,适用于各种流量场景。   相似文献   

16.
机动车左弯待转区设置的临界条件   总被引:2,自引:0,他引:2  
为寻求左弯待转区的设置依据,分析了交叉口的几何形状,给出了设置左弯待转区的几何临界条件;利用累计曲线和交通波理论建立了左转车排队位置模型,如果交叉口的渠化方案和信号配时方案保持不变,应用排队位置模型可以得出在排队长度约束下的临界流量和极限流量;如果左转车的到达率一定时间段是稳定不变的,可以得到设置左弯待转区的左转相位最短绿灯时间和最长红灯时间.研究成果可为左弯待转区的设置提供理论依据.  相似文献   

17.
针对交叉口传统移位左转交通组织存在的交通冲突与通行效率问题,提出了一种改进的移位左转车道设置方法,并分析改进前、后的交通冲突状况。综合考虑行人与非机动车的过街需求,分析路段左转信号与交叉口主信号之间的协调控制关系,设计改进的移位左转交叉口相位方案,建立移位左转交叉口设计要点计算模型,包括移位左转车道长度、路段左转变道段长度、路段左转车储存段长度。假设车辆到达服从泊松分布,推导并建立改进的移位左转交叉口各相位的延误计算模型。以车均延误最小为目标,构建改进的移位左转交叉口信号控制参数优化模型,采用穷举法给出其求解算法。从左转交通量、移位左转车道长度、交叉方向右转车辆比重3个方面分析改进方法的适用条件,并借助VISSIM仿真,使用在哈尔滨市交叉口收集的数据验证改进方法的效用。研究结果表明:当移位左转车道长度为100 m左右时,该交通组织方式可以发挥最大效益;改进的移位左转交通组织较改进前交叉口车均延误下降了16.1%,验证了所提改进方法的有效性;当左转交通量小于400 pcu·h-1,交叉方向右转交通量比重大于25%时,采用改进的移位左转方法,交叉口的通行效率改善更加显著。研究成果可为移位左转车道的设置及信号配时提供依据。  相似文献   

18.
为了解决连续流交叉口车辆多次停车问题,提出了各流向车辆在所遇第2条停车线处不用停车的优化控制策略。通过协调主预信号配时,调整信号控制相位相序方案,促使车辆直接通过所遇第2条停车线,使得左转车辆停车次数由3次减少到2次或者1次,直行车辆停车次数由2次减少到1次。分析各流向车辆到达-驶离图式,构建左转车流在所遇第3条停车线处的延误计算模型,结合Webster经典模型,给出连续流交叉口整体延误计算模型,其计算结果与VISSIM仿真结果基本一致。推导给出车辆不二次停车、车车不冲突以及连续流交叉口自身交通组织等因素所需满足的约束条件,以交叉口车均延误最小化为优化目标,构建连续流交叉口主预信号协调配时优化控制模型,并设计了4种交通场景以验证不同情况下的效益改善情况。研究结果表明:通过信号协调减少1次停车,能够降低50%以上的车均延误和车均停车次数;根据各转向交通量所占比例选择合适的车道分配方案有助于提升连续流交叉口通行效率;在2种策略下交叉口车均停车次数分别为0.88~1.05、0.59~0.77,与已有控制策略约2次车均停车次数相比,明显降低了连续流交叉口车辆停车次数。研究成果可为连续流交叉口控制提供新的视角,对交叉口通行效率的提升效果也更加显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号