首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
厦门钟宅湾大桥主桥为58 m 208 m 58 m三跨中承飞翼式钢箱提篮拱桥,主桥承台采用钢板桩围堰施工。介绍了承台钢板桩围堰施工方法。  相似文献   

2.
顺德支流特大桥为102m+160m+90m预应力混凝土连续刚构桥。由于通航和水利的要求,顺?支流特大桥主墩承台埋入河床较深,采用钢板桩围堰施工时基坑开挖深度最深达18m。对该钢板桩围堰的设计计算要点及施工过程进行了介绍。  相似文献   

3.
介绍了广州新造珠江大桥的工程背景,辅助墩承台施工所采用的钢板桩围堰结构、荷载工况、空间有限元分析计算,及增量法在钢板桩围堰设计中的应用,设计经验可为同类结构提供参考。  相似文献   

4.
采用拉森钢板桩围堰做水中墩承台时,确定钢板桩的强度、刚度和入土深度是保证承台顺利施工的关键。文中以某跨海特大桥水中墩承台围堰为例,介绍了拉森钢板桩围堰的结构形式、内力和入土深度的计算方法,并对拉森钢板桩围堰的工艺流程和施工方法做了较详细的阐述,可为类似工程的施工提供一定的借鉴作用。  相似文献   

5.
刘跃武 《桥梁建设》2012,42(Z1):112-115
天津海河春意桥主桥跨径布置为57.5 m+85 m+57.5 m,上部结构采用钢箱梁结构形式,主桥水中墩承台基坑开挖深度在水面以下12.5m,采用拉森钢板桩围堰的基坑支护形式施工.施工中将带锁口的拉森钢板桩打入承台基坑四周的河床,钢板桩之间通过锁口互相咬合,形成1个封闭的能够有效阻止水流渗透的长方形围堰,同时在围堰内加设3道内支撑,之后在封闭的围堰内进行基坑的抽水及开挖.  相似文献   

6.
芒稻河特大桥主桥为(77+3×130+82)m预应力混凝土刚构-连续梁组合体系桥,主墩基础位于深水区,承台施工时抽水最大水头达18.7m。采用钢板桩围堰施工承台,围堰最大平面尺寸为45.6m×16.8m,采用拉森Ⅳw型钢板桩,单根桩长36m,围堰内设置5道内支撑。采用有限元软件,计算围堰3个主要施工工况下钢板桩和内支撑的变形、应力,以及围堰封底抽水完成工况下封底混凝土的抗浮安全系数和应力,计算结果均满足要求。施工时,采用定位导向架和平面定位框限位插打钢板桩,内支撑采用工厂拼装现场分层整体吊装、水下抄垫等工艺,应用水下分阶段吸泥、水下二次封底等施工技术,实现了深水钢板桩围堰快速安全施工。  相似文献   

7.
在深水基坑施工中,钢板桩围堰是保证基坑质量与安全的可靠技术.结合唐津高速海河大桥承台施工实例,介绍了钢板桩围堰结构设计与结构验算的方法,为桥梁承台钢板桩围堰施工提供经验借鉴.  相似文献   

8.
《中外公路》2021,41(3):130-134
济南凤凰路黄河大桥跨黄河主桥为三塔(钢塔)自锚式悬索桥,跨径组合为(70+168+2×428+168+70) m,中塔位于黄河中心位置,承台埋入河床较深,采用拉森IVw钢板桩围堰施工承台,围堰最大平面尺寸为37.1 m×27.1 m,桩长21 m,共设置3道横向围囹。采用Midas有限元分析软件,根据施工工序同时考虑内外水压力、土压力及水流作用,选取了4个荷载工况计算钢板桩及围囹变形及应力情况。计算结果表明符合规范要求。设置具有一定刚度的、坚固的定位导向架系统实施钢板桩的插打,基坑按"先安装支撑后开挖,分层支撑分层开挖"的原则开挖,开挖过程中利用传感器对围堰进行实时监测,实现深埋式承台钢板桩安全快速施工。  相似文献   

9.
舒海 《公路与汽运》2009,(3):168-170
文中介绍了洛溪大桥2^#墩承台加固维修施工中钢板桩围堰的设计方案,并对设计方案进行了受力、稳定性等分析和验算;说明了钢板桩围堰的施工技术。加固后的洛溪大桥2^#墩承台各项指标满足相关要求,证实此加固钢板桩围堰的设计合理。  相似文献   

10.
珠海洪鹤大桥主桥由2座主跨均为500 m的双塔双索面结合梁斜拉桥串联而成,其中8号主墩位于海岸浅滩区,墩位处淤泥层厚8.8~37 m,覆盖层平均厚48 m,岩层埋深较深,且呈斜面发育,岩石强度高达100 MPa。8号主墩承台尺寸为42.1 m×22.6 m×6.5 m,采用?2.8 m钻孔灌注桩群桩基础,采用先平台后围堰工序施工。钻孔平台采用土工布砂袋围堰筑岛施工技术,解决了深淤泥地质中筑岛施工容易出现的滑移和沉降;钻孔桩采用“旋挖钻+回旋钻”组合成孔技术进行钻孔深度超100 m的超深大直径嵌岩桩施工,充分发挥2种钻机在不同地质和钻孔深度的优势,极大提高了成孔效率;承台深基坑围堰采用“大型钢板桩围堰+干挖法”施工技术,有效减少了深基坑围堰施工中围堰的变形失稳和沉降。  相似文献   

11.
针对桥梁建设过程中深基坑工程地下水位较高的卵石层地区设计和施工难度较大的问题,提出采用钢板桩围堰的施工方案。以百嘉赣江大桥为依托工程,设计钢板围堰,并进行受力验算,结果证明所设计的钢板桩围堰能满足各种工况要求。制定相对应的钢板桩围堰施工方案,确定合理的施工工艺及施工方法,保证施工顺利进行。实践证明,钢板桩围堰强度高、防水好,可重复使用,适合在卵石层深水浅埋基坑等工程中推广应用。  相似文献   

12.
武汉天兴洲公铁两用长江大桥3号主塔墩吊箱围堰设计   总被引:1,自引:0,他引:1  
龚国锋 《桥梁建设》2007,(A01):22-25
武汉天兴洲公铁两用长江大桥3号主塔墩双壁钢吊箱围堰集钢护筒插打定位、导向,钻孔作业平台,承台施工功能于一体,可根据施工水位依靠围堰自身浮力上下浮动。对该围堰的设计特点与设计方法进行介绍。  相似文献   

13.
灌河大桥主4号墩承台为哑铃形,墩位处水深、潮差大、水流流速快,选用双壁钢围堰进行承台施工。文中对围堰的设计、制作、下水、运输、吊装定位下放等关键技术进行了介绍。通过对钢围堰加工制作质量的控制、关键焊缝的检测、安全运输、整体吊装及定位下放,顺利完成了承台施工。  相似文献   

14.
以位于某铁路支线公路的L大桥为研究背景,研究内河深水暗流钢围堰施工关键技术.通过有限元建立该大桥钢围堰模型并设定模型条件,对钢板桩、土层相互作用以及河水水位上涨等展开拟合计算.依据水文地质参数及水流压强,计算钢围堰整体自重、静水压力、水浮力、流水压力等,将结果导入有限元模型,以模拟钢围堰施工过程,并清晰展现其中5种危险施工情况.试验结果表明,平衡前与平衡后土层位移最大值分别是8 736 mm、2 661 mm,该情况符合施工条件;钢围堰Y方向最大位移为76 mm,进行抽水与拆除支撑时位移增大,此时应加强施工安全警惕;钢围堰等效应力随静水压力增大而大幅度增加;钢板桩位移与水位成正比,水位上涨初期钢板桩位移与水位未上涨时相差不大,当水位上涨最高期时,钢板桩承受流水压力增大.  相似文献   

15.
翁慧霞 《城市道桥与防洪》2013,(6):157-159,13,12
针对奉干路浦南运河桥的实际情况,介绍了双层钢板桩围堰在施工中的应用。其中详细介绍了钢板桩围堰的设计、施工工艺、施工监测及围堰拆除,并对钢板桩围堰的关键技术进行了总结。  相似文献   

16.
珠江黄埔大桥钢板桩围堰支护系统设计与施工   总被引:1,自引:0,他引:1  
钢板桩围堰作为封水、挡土结构,在浅水区基础工程施工中应用较多。介绍广州珠江黄埔大桥南汊悬索桥北桥塔承台基础施工时所采用的大型钢板桩围堰支护系统的设计、施工要点。  相似文献   

17.
胡永  何贤军  张会俊 《世界桥梁》2006,(4):24-26,30
钢吊箱围堰施工方法是深水承台施工中的一种主要施工方法。钢吊箱作为深水承台施工的主要构件,其设计的合理与否关系到整个桥梁的施工质量。以柳州市三门江大桥高桩承台施工为例,介绍拉压柱式钢吊箱围堰的设计与施工,重点介绍钢吊箱围堰的设计方案、工作原理、施工工艺及施工要点等技术细节,同时对钢吊箱围堰施工中的注意事项进行了阐述。工程实践表明,该钢吊箱设计合理,能满足工程的需要,对同类承台施工有一定的借鉴意义。  相似文献   

18.
宁波舟山港主通道北通航孔桥为(125+260+125)m的钢-混凝土混合梁连续刚构桥。主墩承台下设13根?3.5 m/3.0 m变径钻孔灌注桩,承台采用40 m×22.6 m×8 m的永久性防撞钢套箱施工,防撞钢套箱下放后进行封底混凝土施工。利用MIDAS Civil软件建立防撞钢套箱结构整体有限元模型,对承台施工阶段不同工况下封底混凝土受力进行计算分析,确定主墩承台封底采用厚度为2.21 m的C30混凝土。封底混凝土施工采用集料斗法,施工时,搭设封底浇筑平台、设置布料点,逐点首封,按照“由外向内、由中心向四周”的顺序灌注封底混凝土。在舟山外海恶劣施工条件下,承台施工期间封底结构安全且无渗水现象,取得了良好的施工效果。  相似文献   

19.
武汉天兴洲公铁两用长江大桥2号主塔墩基础大型钢吊箱围堰采用工厂整体制造,下河浮运至墩位,利用锚墩施加预拉力精确定位的施工新工艺。钢吊箱围堰同时用作钢护筒插打导向架、钻孔桩施工平台及承台施工的防水围堰。本项新技术可运用于水流方向多变、水位变化大的河段及近海跨江跨海特大型桥梁深水基础钻孔桩及高桩承台施工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号