首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
对于悬臂浇筑预应力混凝土连续梁而言,确保连续梁T构施工过程中的安全稳定是至关重要的,本文结合西宁市同仁路北延工程(56.5+95+66.5)m连续梁为例,介绍了0#块临时固结及支撑体系的设计及施工;详细计算了连续梁T构最大不平衡弯矩、竖向反力以及预埋钢筋的锚固长度;采用Midas软件建立相关的模型,对支撑体系进行受力分析验算,并对支撑体系施工步骤进行介绍,施工结果表明:该方案施工过程安全可靠,施工质量得到保障,且可重复利用,降低了施工成本,为类似工程施工提供参考。  相似文献   

2.
襄渝二线朱溪河右线大桥施工技术   总被引:2,自引:1,他引:1  
朱溪河右线大桥为(72+128+72)m三跨预应力混凝土连续刚构桥,梁部为单箱单室结构,主墩为变截面矩形空心墩,采用嵌固基础.主墩采用翻模法施工,并采取大体积混凝土防开裂施工措施;梁部施工采取在主墩墩顶托架上浇筑O号块,利用轻型挂篮从O号块向两侧对称悬臂浇筑各梁段,形成2个T构,同时在两侧桥台的支架上浇筑边跨现浇段,然后先中跨合龙,再边跨合龙形成连续刚构体系,其中预应力施工采用预应力管道真空辅助灌浆技术,施工过程中对主粱线形进行监控.  相似文献   

3.
某黄河大桥主桥上部结构有限元静力分析   总被引:2,自引:0,他引:2  
以某黄河大桥主桥(70 m+11×120 m+70 m波形钢腹板PC组合多跨连续箱梁桥)为背景,按合龙、张拉体外预应力钢束、施加二期恒载、施加活载等施工及营运流程,进行波形钢腹板预应力混凝土组合桥梁的上部结构顶底板混凝土应力、波形钢腹板应力及结构刚度(挠度)的有限元静力分析,验算其是否符合现行规范要求.结果表明,波形钢腹板的钢板厚度可以满足要求;墩顶处顶板不满足抗裂要求.正常使用极限状态下箱梁波形钢腹板竖向剪应力满足规范限值,但安全系数不高;波形钢腹板屈曲验算得到的剪切屈服强度为31 MPa,安全系数很大.  相似文献   

4.
太原市北中环涧河路立交分南、北两幅,上跨铁路处分别为(54+57)m、(67+67)m连续刚构桥,其中箱形T构按全预应力构件设计,以墩底同步转体方式施工,转体重量超万吨。转体结构由下转盘、球铰钢销轴、上转盘、撑脚、钢板滑道、千斤顶反力座等构成。在下承台施工时预埋转体结构的牵引力座、反力座、滑道支架等的钢筋和钢构件,分3次浇筑下转盘混凝土,吊装并精确定位上球铰;采用定型钢模板、塔吊施工主墩;双幅T构平行铁路线同步预制,通过竖向预应力完成T构墩台锚固、墩梁锚固;对T构进行不平衡力矩测试,经配重、试转后,双幅T构均采用2台QDCL200型穿心式连续提升千斤顶同步转体,转体到位后进行后浇段和球铰封固作业。  相似文献   

5.
上海某大桥主桥为双塔自锚式悬索桥,主体结构采用(40+70+40)m三跨塔梁组合结构体系,由钢筋混凝土主塔、预应力混凝土箱梁、主缆、吊杆组成。本文主要针对主缆混凝土浇筑对预应力管道破坏的施工问题进行分析,从施工过程记录、预应力孔道变形参数汇总分析、后续解决流程及方案三方面综合分析,全过程记录施工过程中因混凝土浇筑对主缆预应力孔道造成破坏的成因及对策。通过结合实践数据的过程记录及分析来验证类似问题的解决策略,指导类似项目如何工前预防、工后补救,避免对工程造成不可逆的巨大损失。  相似文献   

6.
某地铁高架桥为65 m+120 m+65 m预应力混凝土变截面连续梁桥,建成后运营不久发现主梁产生较大的竖向下挠,并且主梁跨中底板出现较多延伸至腹板的横向裂缝。为了解主梁下挠和裂缝产生的原因以及目前桥梁的技术状况,对该桥梁进行了专项检测,并采用有限元软件进行结构验算。检测及验算结果表明:该桥梁体下挠和开裂的主要原因主要是梁体跨中预应力的损失,特别是底板束预应力损失过大或张拉不足而导致的梁体抗弯承载力不足。根据检测评估结果主要采用了体外预应力钢束进行维修补强。维修处治后的荷载试验表明,桥梁强度、刚度及动力性能均满足规范要求,桥梁加固处治效果良好。  相似文献   

7.
武汉西四环汉江特大桥主桥为(77+100+360+100+77)m预应力混凝土梁斜拉桥,主梁为π形结构,两边为单箱双室、中间为纵横梁加桥面板结构形式。主梁0号块宽44m、长22m,采用钢管桩贝雷梁支架现浇施工。支架由底模系统、横梁(贝雷梁)、桩顶分配梁、砂筒、钢管支架组成,支架施工完后采用反力架预压钢管桩,边箱室顶板底模采用透水模板布施工。通过混凝土配合比优化,配制高耐久性、稳定性的C55高性能混凝土,并采用天泵和地泵从两个方向分层浇筑,桥面纵、横坡采用提浆整平机控制。在0号块混凝土强度成长期预张拉横向预应力,纵向预应力待1号和1′号块施工完采用连接器连接构成整束一次性张拉;预应力采用智能张拉系统张拉、智能压浆系统压浆。实践表明,该桥采用该施工技术成功克服了支架不均匀沉降,有效控制了裂纹的产生,保证了主梁0号块的施工质量与施工安全。  相似文献   

8.
杜松  翁方文  周毅 《桥梁建设》2023,(1):143-149
新建福厦铁路泉州湾跨海大桥为时速达350 km的高速铁路桥,其海上浅滩区部分引桥为15联(50+50) m T形刚构桥。主梁为单箱单室预应力混凝土箱梁,采用挂篮对称双悬臂浇筑施工,T构未设置独立合龙段,而是采用浇筑最后一节边跨直线现浇段的方式直接实现T构梁段合龙。主梁施工过程中,墩顶0号块(A0节段)采用三角托架法现浇施工,三角托架安装后进行预压,然后采用一次浇筑成型工艺浇筑节段混凝土;A1~A12悬臂节段采用全封闭式挂篮悬臂施工;在A13边跨直线现浇段施工时,对落地钢管支架法、边墩三角托架法、墩顶吊架法、挂篮悬臂浇筑法进行综合比选,最终选择挂篮悬臂浇筑法施工。A13边跨直线现浇段施工时,利用挂篮底平台作为其底模系统、挂篮外侧模板作为其外侧模板,采用3拼I14型钢对挂篮底纵梁进行支撑,在墩帽处垫石两侧用?20 mm精轧螺纹钢对挂篮进行对拉,增强了模板稳定性;通过平衡配重的设置及支座约束解除时机的控制,保证了A13节段施工质量。结构受力及线形均满足设计要求。  相似文献   

9.
以府河大桥主桥70+120+70(m)预应力混凝土连续梁为背景,对挂篮施工过程的箱梁横向框架进行了受力分析.结合分析结果,对大跨径、宽幅预应力混凝土连续梁结构设计提出了一些建议,为以后同类型桥梁设计提供参考.  相似文献   

10.
龚玉华  陈雷  陶路  彭旭民 《世界桥梁》2012,(3):20-23,27
河头一号大桥主桥为(70+120+70)m预应力混凝土连续刚构桥,为解决该桥高边墩长边跨梁段的施工难题,对落地支架法、墩顶吊架法及挂篮不对称浇筑结合墩顶托架法3种施工方案进行对比分析。分析结果表明,中跨合龙后采用挂篮不对称悬臂浇筑一个边跨梁段,在边墩顶设置托架现浇施工边跨剩余直线段的施工方案经济性较好、工期相对较短、施工操作便捷、对结构受力较为有利,作为高墩长边跨连续刚构桥的施工方法较为适宜。  相似文献   

11.
王祺明 《城市道桥与防洪》2011,(2):36-40,53,112
哈尔滨松浦大桥辅航道桥上部结构为六跨单箱双室预应力混凝土连续梁结构,设计中需考虑严寒条件下桥梁的荷载、耐久性、施工周期等问题;桥梁采用三向预应力体系,悬臂浇筑和满堂支架现浇相结合的施工方法。该文阐述了具体纵向、横向、竖向预应力配置情况,结构计算概况,合拢段、横梁的设计,以及指导性施工步骤等,可供相关专业人员参考。  相似文献   

12.
《世界桥梁》2021,49(4)
新建武汉至十堰高速铁路崔家营汉江特大桥主桥采用(135+2×300+135) m连续刚构柔性拱组合桥,主梁为C60预应力混凝土结构,拱肋为钢管混凝土桁架拱。上部结构施工采用先梁后拱法,主梁0号节段利用托架分层浇筑,其它节段悬浇采用三主桁挂篮并配置自行式模块化内平台施工,在边跨侧T构悬臂设置平衡配重;先合龙边跨,再利用大吨位千斤顶同步对顶技术实现双主跨同时合龙,采用气动辅助法穿设主梁超长预应力束;主拱肋先利用组拼式浮吊在桥面分三区段低位拼装,再同步提升中间大节段进行合龙;边拱采用桥面汽车吊支架法原位拼装;拱肋弦杆、平联板及缀板内C50微膨胀混凝土采用二级泵送方式压注,然后对称施工吊杆及附属结构。  相似文献   

13.
晏敬东  陈强 《桥梁建设》2012,42(1):102-107
阳泉至盂县高速公路桃河特大桥跨石太铁路为(75+75)m预应力混凝土T形刚构桥,为减少桥梁施工对铁路安全运营的影响,T构采用高墩转体法施工.T构转体长度为109 m,转体高度为51.15 m,转体重量为150 MN.为确保施工精度及安全,对转盘与滑道的安装精度及T构线形与应力进行控制,通过在承台内预埋调节螺栓及高精度的控制测量,使滑道及转盘的安装误差控制在较小的范围;通过主梁预拱度设置、预压测量挂篮变形、T构自重控制、纵向预应力施工控制、桥面临时荷载控制、温度控制等措施,使梁体的应力状态和线形满足设计要求.  相似文献   

14.
本文对门式支架用于现浇预应力混凝土连续箱梁施工进行了探索和总结,在箱梁支架和模板体系的选择、验算及安装、预应力筋和加工安装、混凝土浇筑、后张预应力张拉等方面形成了一套较为成熟的施工工法,该工法设计科学,结构尺寸标准,安拆方便快捷,有较好的经济效益。  相似文献   

15.
武汉长丰大道高架桥为(55+90+90+55) m预应力混凝土连续刚构桥,位于曲线上。38号、39号墩上部箱梁采用先支架浇筑后平转的施工方法,转体重量分别约155 000 kN、135 000 kN。为指导该桥正式转体,采用球铰竖向转动法进行不平衡重称重试验。首先通过理论分析称重过程中球铰受力,推导球铰处于静、动摩擦状态之间的极限状态时最大静摩阻力矩、不平衡力矩、重心偏心量及静摩擦系数公式;然后分析顶升力与位移试验结果,确定极限状态时的顶升力并代入公式,推算转动相关参数值。该桥横向、纵向重心偏心量分别设置为0 m、0.050 m;根据不平衡力矩,设置纵横向配重;试转时38号、39号墩转动体启动牵引力实测值分别为674 kN、531 kN,与计算值较接近,满足平转牵引要求。  相似文献   

16.
空腹式连续刚构桥施工过程受力特性分析   总被引:2,自引:1,他引:1  
北盘江大桥主桥为(82.5+220+290+220+82.5)m的预应力混凝土空腹式连续刚构桥,其三角区下弦采用挂篮辅以扣索施工,上弦采用支撑于下弦顶面的支架现浇施工,后续梁段采用挂篮悬臂浇筑施工。为研究该桥在施工过程中的受力特性,建立全桥有限元模型,对临时扣索张拉及拆除、预应力张拉、后续梁段施工等工况进行计算分析。结果表明,由于梁段浇筑、扣索张拉、预应力张拉的影响,上弦支架部分应力集中;三角区扣索索力变化不大,基本上随施工进度递减;中跨合龙后,支架拆除对主梁及斜腿受力影响不大,扣索拆除使主梁及斜腿应力峰值有效降低。  相似文献   

17.
根据工程实际需要,提出横向分段施工预应力混凝土斜箱梁结构的施工方式,并对此施工方式的箱梁桥和整体浇筑的箱梁桥进行模型试验研究与有限元计算。通过各种工况的试验加载,及对实测得到的试验数据(挠度和应变)数理统计、图表分析比较和相应的有限元分析,定量比较了两者的受力性能差异,即混凝土开裂前,横向分段施工预应力混凝土斜箱梁的挠度比整体浇筑斜箱梁的挠度约大5.3%,纵向应变比整体浇筑斜箱梁的纵向应变大13.5%,湿接缝的纵向应变是整体浇筑施工斜箱梁的纵向应变的59%。横向分段施工预应力混凝土斜箱梁截面上存在着预应力的应力重分布,此重分布应力对湿接缝的混凝土受拉变形产生了抑制作用,且现有的有限元通用程序尚无法计算此应力重分布值的大小、  相似文献   

18.
大跨径混合梁斜拉桥边跨混凝土梁常采用短线预制拼装法施工,施工过程中有多次体系转换。为确保施工过程中的安全和节段间的顺利拼接,以石首长江公路大桥主桥北边跨(75+75+75)m混凝土梁为对象,分析宽幅短线预制混凝土箱梁施工阶段以及成桥恒载状态下横向受力与变形,确定横向预应力分次张拉时机和控制目标,采用MIDAS Civil建立梁段有限元模型,根据施工阶段应力和位移结果确定合理的横向预应力张拉方案。研究结果表明,宽幅短线预制混凝土箱梁施工过程中以横向受力为主,且多次体系转换,横向预应力须分次张拉到位;横向预应力分次张拉方案由位移和应力双控,横向预应力分次张拉的次数和时机在保证安全和顺利拼接的基础上可根据施工特点进行优化,预应力张拉束数和张拉力百分比可结合工期要求和预应力施工的便利性来进行考虑。  相似文献   

19.
以某40m+5×70m+40m预应力混凝土箱梁为依托,分析了日照作用下混凝土箱梁竖向温度分布规律。借助midas Civil有限元结构分析软件,分别建立了箱梁悬浇阶段和成桥状态下的温度引起的结构状态变化模型,并进行了温度对箱梁应力和挠度影响的计算与分析。结果表明,温度对桥梁应力及挠度有一定影响,特别是成桥状态下温度对桥梁应力影响较大,因此在桥梁施工监控和结构测试时应考虑温度效应。  相似文献   

20.
叉河大桥为T型预应力混凝土连续刚构箱梁结构。该文介绍了对主墩0#块箱梁托架进行设计验算,从而保证了施工安全及施工质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号