首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
尚桦 《水运工程》2024,(3):136-139
三峡升船机水位波动受电站调峰、船闸泄水等因素影响,变化非常复杂,下闸首水位变率可达0.9 m/h。三峡升船机运行期间,水位波动导致的停机故障占比约29%,经常影响升船机运行安全。通过收集升船机运行停机故障数据并展开分析,研究水位波动对升船机运行的影响,并从运行对接前期、船厢与闸首对接期间、开船厢门期间、船厢与航道连通期间4个阶段提出水位监测应对建议。在易受水位波动影响的敏感环节应提前做好水位趋势预判,掌握水位波动规律,及时采取相应措施避免三峡升船机发生停机故障。  相似文献   

2.
为了提高三峡升船机上闸首桥机抓梁电缆卷筒的运行可靠性,能使其操作的检修门与工作门稳定可靠发挥其挡水防洪兼具适应水位变化调整门位的双重功能。本文分析了现状并通过计算,对电缆卷筒相关控制进行了优化研究,实现电缆卷筒与主起升之间的速度同步,保证抓梁电缆所受张力恒定,对闸首桥机稳定可靠运行有着很重要的实际意义。  相似文献   

3.
闫晓青 《水运工程》2021,(8):117-121
为了分析三峡升船机下游引航道与下闸首卧倒门运行区域非恒定流运动特性,采用Flow-3D软件建立三峡升船机承船厢与下闸首卧倒门运行区域的三维模型,通过水面波动荷载概化模型计算分析下游不同水位、不同波幅非恒定流对下闸首卧倒门运行的影响因素。研究下游非恒定流作用于卧倒门的理论计算力矩与卧倒门关门实测力矩的关系,提出卧倒门安全运行策略,降低由下游非恒定流作用而引起的下闸首卧倒门运行安全风险。结果表明,下游引航道较小的水面波动传递到升船机下闸首卧倒门运行区域将引起很大的水面波动,而枢纽下游水位对卧倒门运行影响较小。  相似文献   

4.
三峡升船机为齿轮齿条爬升平衡重式垂直升船机,具有提升高度大、提升重量大、上游通航水位变幅大、下游水位变化速率快的特点,是目前世界上技术难度最高且规模最大的升船机工程。停位对接是指承船厢垂直上升或下降后,停在闸首工作门附近,此时船厢内的水位高度与闸首门外侧的航道水位高度一致,开启船厢门和闸首门,使船厢内水域与上、下游航道水域联通。  相似文献   

5.
张银婷  彭享文  陈新 《水运工程》2020,(12):131-135
三峡升船机布置在三峡枢纽左岸,北侧与三峡船闸相邻,右侧与三峡电厂毗邻。与国外升船机布置在人工运河上相比,三峡升船机布置在天然航道上,且地处三峡船闸和三峡电厂中间。受枢纽防洪调度、发电调度及三峡船闸运行的影响,不同时期的水情变化对三峡升船机的运行会产生不同程度的影响。对三峡升船机全年不同时期的上下游水情特点进行分析,并采用数据统计分析的方法分析水位变化对上下闸首工作门门位调整的影响及水位波动导致的水位变幅超限及调整船厢水深次数增加的规律。最后,从运行管理的角度提出加强与调度部门的联系、加强水位数据的运用分析及进一步探索运行操作技巧3个运行应对建议,以期提高运行人员对水位变动的应对水平。  相似文献   

6.
向家坝升船机上、下闸首工作门布置在上闸首的末端、下闸首的起始端,是升船机船厢室的上、下游挡水设施,闸门型式为下沉式平面定轮闸门,工作时闸门处于悬吊挡水状态。在停航期间对闸首工作门内的渗漏水进行封堵、引排改造,通过现场分析、发明新型专用小工具、运行调试等手段进行分析研究,闸首工作门内渗漏水进一步得到改善,保证向家坝升船机的安全、高效运行。  相似文献   

7.
三峡升船机下闸首涌浪超限改善工程初步研究   总被引:2,自引:2,他引:0  
张勇 《水道港口》2016,(4):416-421
受下游引航道往复流影响,三峡升船机下闸首最大水位变率达0.9 m/h,超过0.5 m/s的设计值。文章提出了在下游引航道内设置防浪闸的思路和初步工程方案,利用MIKE21数学模型,对防浪闸阻隔波浪的效果进行了计算,并对方案进行了优化。初步提出了防浪闸与升船机联合运行工艺。结果表明:设置防浪闸后,可使升船机下闸首最大水位变率降至0.45 m/h以下。  相似文献   

8.
程龙  李云  安建峰 《水运工程》2016,(12):158-163
通过1:80的三峡枢纽及下游引航道整体物理模型研究了典型的大坝泄洪、电站调峰、船闸泄水及其叠加工况下的升船机下游引航道非恒定流波动特性。结果表明:三峡枢纽下游引航道内的水位波动是引航道波流运动和两坝间流量差引起的河道涨、落水长波耦合叠加的结果。枢纽进行百年一遇洪水调节时升船机下闸首水位波动最大小时变幅061 m/h。当大坝泄洪单次调节流量小于2 000 m3/s时,升船机下闸首水位波动小时变幅小于042 m/h。电站调峰运行时,升船机引航道水位波动首波幅值随流量变幅和变率的增大而增大,最大小时变幅则取决于流量变幅和两坝间净流量大小。船闸双线同时泄水时升船机下闸首水位最大小时变幅018 m/h,基本不影响升船机运行。  相似文献   

9.
在下游对接过程中,对接水位差和船舶进出厢引起水面波动是影响船舶停泊条件及升船机安全运行的主要因素。为了研究该因素对景洪升船机的影响,进行了重载和空载船舶在不同速度进出船厢、不同对接水位差启闭卧倒门的实船试验,得到相应工况下船厢水面波动、同步轴扭矩、船舶系缆力等变化特性,建立同步轴扭矩与影响因素间的相互关系,提出满足景洪水力式升船机安全运行的船舶进出厢航速与升船机对接水位差的安全控制指标。  相似文献   

10.
水力式升船机因其下游对接过程中存在多重流固耦合,如船厢与船厢池、船厢内水体与船厢、竖井水体与平衡重等,对接过程升船机受力较传统钢丝卷扬下水式升船机更为复杂。为保证水力式升船机下游安全高效对接运行,对水力式升船机制动器工作状态和下游对接位选取进行深入研究。依托景洪水力式升船机原型观测下游对接过程试验,探讨下游制动器工作方式、船厢对接位对升船机运行的影响,推导有对接水位差制动器不上闸时开启船厢门船厢位移公式,得出制动器工作方式与船厢对接位选取的适用条件。  相似文献   

11.
针对三角门船闸闸门启闭力计算的问题,介绍了启闭力的计算方法,阐述了水流速度与闸门启闭力的关系,并用实例进行了分析计算,从而搞清了水流速度对闸门启闭力的影响。  相似文献   

12.
长兴造船基地一期工程三号线的船闸闸口门为40m宽人字门,是目前国内已建成的最宽的人字门.介绍人字门的关键部件--作为旋转中心轴的顶枢和底枢、构成三铰拱结构铰点的支承部件以及液压启闭机的设计思路.  相似文献   

13.
船闸人字门高位顶落门施工须安装固门工装,而传统的固门工装安装复杂、安全性较差。针对现有的固门情况及缺陷,设计研究了三峡、葛洲坝船闸人字门顶落门新型固门工装,并用于工程实践。优化后的固门工装安装简单、安全可靠,有效节约了施工时间和空间、降低了施工成本。根据应用情况提出今后进一步的优化思路。  相似文献   

14.
杭东 《中国船检》2008,(2):86-88
当克劳汀紧紧抱住儿子的时候,生命的意义是那样清晰:是她自己的意志和对儿子无尽的爱支撑她孤身一人在地狱门口走过,从无边的大海回到了陆地。  相似文献   

15.
改型设计小型海缆船,在尾甲板加装尾门吊,介绍尾门吊的工况、安装及工作原理。  相似文献   

16.
朱泽峰  朱召泉  方帅 《水运工程》2017,(12):174-178
人字闸门作为一种承受单向水头的平面闸门,在通航建筑物中得到了广泛的运用。针对人字闸门在运行过程中容易出现振动现象的问题,对人字闸门进行了流激振动响应分析,以了解人字闸门外部激振作用。通过模拟水流脉动荷载,计算分析了人字闸门的应力、位移和加速度响应值,对闸门的振动危害进行了判断。  相似文献   

17.
邢述炳  丁峰 《水运工程》2016,(11):157-161
背拉杆是人字闸门必不可少的构件。对比了人字闸门非预应力背拉杆及预应力背拉杆的计算方法,给出了非预应力背拉杆的改进措施;通过有限元软件分析不同背拉杆结构形式的人字闸门抗扭刚度,指出了门体变形控制参数之间的相互关系,印证了预应力背拉杆对提高人字闸门抗扭刚度、降低门头下垂量等的巨大作用。  相似文献   

18.
招滨  叶梅 《水运工程》2021,(12):104-107
针对水工钢闸门在水利工程中的特殊重要性,分析传统检测和原型观测的局限性,提出实时在线监测的必要性。以岷江犍为航电枢纽泄水工作闸实时在线监测系统为例,设计在线监测系统整体结构和线缆收放,给出平面定轮闸门结构应力、结构动力响应、运行姿态、定轮运行状态的监测方案与传感器选型方案。  相似文献   

19.
门缝输水是三角闸门的一种重要特性。基于三角闸门门缝输水,低水头船闸可以不设置阀门以降低工程建设成本,但具体适用工况尚难把握。依托未设置阀门的大柳巷船闸,采用理论计算与现场实测相结合的方法,分析了门缝输水时水力及启闭力。研究表明:口门越大三角闸门能承受门缝输水的水头越小;目前门缝输水有关计算公式尚需结合三角闸门的结构特点确定流量系数;三角闸门启闭力除按规范公式计算外还应考虑门体缝隙流和惯性阻力矩的影响。  相似文献   

20.
大型船闸人字闸门通常设置浮箱以改善顶底枢运转件的受力状态,降低门头下垂量。在同等浮力下,先对比矩形、U型、⊥型、L型、J型、T型、Π型等7种不同形式的浮箱,分析顶底枢支反力、门头下垂量、固有频率、通气路径等特性,给出相对合理的浮箱结构形式;在此基础上,再对比1层、1层半、2层、3层、4层等5种不同浮力大小的浮箱,分析并给出相对合理的浮箱浮力控制范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号