首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By developing a steady state diagnostic model for a stratified deep-water mass, one is able to quantify both the mass flows and apparent oxygen removal in the Baltic proper deep water. The model is based on continuity of the assumed conservative observable volume, salinity and temperature. Second degree polynomials are fitted to observed vertical profiles of temperature as well as oxygen concentration to give a functional correspondence with the used spatial variable salinity. These relations are used in the model that calculate the water flows, oxygen flows and oxygen removal during four periods between 1959 and 1997. The model forms a boundary value problem, which is solved with a finite difference scheme. The model seems to give reasonable estimates of the flows. The oxygen removal is mainly balanced by inflow of oxygen with incoming water. The oxygen consumption is 4–8 μl O2 l−1 day−1, which corresponds to a degradation of organic matter in the range 30–60 g C m−2 year−1.  相似文献   

2.
Estimating salinity to complement observed temperature: 1. Gulf of Mexico   总被引:1,自引:1,他引:0  
This paper and its companion [Thacker, W.C., Sindlinger, L., 2007-this issue. Estimating salinity to complement observed temperature: 2. Northwestern Atlantic. Journal of Marine Systems. doi:10.1016/j.jmarsys.2005.06.007.] document initial efforts in a project with the goal of developing capability for estimating salinity on a region-by-region basis for the world oceans. The primary motivation for this project is to provide information for correcting salinity, and thus density, when assimilating expendable-bathythermograph (XBT) data into numerical simulations of oceanic circulation, while a secondary motivation is to provide information for calibrating salinity from autonomous profiling floats. Empirical relationships between salinity and temperature, which can be identified from archived conductivity–temperature–depth (CTD) data, provide the basis for the salinity estimates.The Gulf of Mexico was chosen as the first region to explore for several reasons: (1) It's geographical separation from the Caribbean Sea and the North Atlantic Ocean makes it a “small ocean” characterised by a deep central basin surrounded by a substantial continental shelf. (2) The archives contain a relatively large number of CTD data that can be used to establish empirical relationships. (3) The sharp fronts associated with the Loop Current and its rings, which separate water with different thermal and haline characteristics, pose a challenge for estimating salinity. In spite of the shelf and the fronts, the relationship between salinity and temperature was found to be sufficiently regular that a single empirical model could be used to estimate salinity on each pressure surface for the entire Gulf for all seasons. In and below the thermocline, root-mean-square estimation errors are small — less than 0.02 psu for pressures greater than 400 dbar, corresponding to potential density errors of less than 0.015 kg/m3. Errors for estimates nearer to the surface can be an order of magnitude larger.  相似文献   

3.
Globally significant quantities of organic carbon are stored in northern permafrost soils, but little is known about how this carbon is processed by microbial communities once it enters rivers and is transported to the coastal Arctic Ocean. As part of the Arctic River-Delta Experiment (ARDEX), we measured environmental and microbiological variables along a 300 km transect in the Mackenzie River and coastal Beaufort Sea, in July–August 2004. Surface bacterial concentrations averaged 6.7 × 105 cells mL− 1 with no significant differences between sampling zones. Picocyanobacteria were abundant in the river, and mostly observed as cell colonies. Their concentrations in the surface waters decreased across the salinity gradient, dropping from 51,000 (river) to 30 (sea) cells mL− 1. There were accompanying shifts in protist community structure, from diatoms, cryptophytes, heterotrophic protists and chrysophytes in the river, to dinoflagellates, prymnesiophytes, chrysophytes, prasinophytes, diatoms and heterotrophic protists in the Beaufort Sea.Size-fractionated bacterial production, as measured by 3H–leucine uptake, varied from 76 to 416 ng C L− 1 h− 1. The contribution of particle-attached bacteria (> 3 µm fraction) to total bacterial production decreased from > 90% at the Mackenzie River stations to < 20% at an offshore marine site, and the relative importance of this particle-based fraction was inversely correlated with salinity and positively correlated with particulate organic carbon concentrations. Glucose enrichment experiments indicated that bacterial metabolism was carbon limited in the Mackenzie River but not in the coastal ocean. Prior exposure of water samples to full sunlight increased the biolability of dissolved organic carbon (DOC) in the Mackenzie River but decreased it in the Beaufort Sea.Estimated depth-integrated bacterial respiration rates in the Mackenzie River were higher than depth-integrated primary production rates, while at the marine stations bacterial respiration rates were near or below the integrated primary production rates. Consistent with these results, PCO2 measurements showed surface water supersaturation in the river (mean of 146% of air equilibrium values) and subsaturation or near-saturation in the coastal sea. These results show a well-developed microbial food web in the Mackenzie River system that will likely convert tundra carbon to atmospheric CO2 at increasing rates as the arctic climate continues to warm.  相似文献   

4.
At Terra Nova Bay, the scallop Adamussium colbecki (Smith, 1902) characterises the soft and hard bottoms from 20 to 80 m depth, constituting large beds and reaching high values of density (50–60 individuals/m2) and biomass (120 g/m2 DW soft tissues). To assess its role in the organic matter recycling in the coastal ecosystem, its filtering and biodeposition rates were evaluated in laboratory experiments during the austral summer 1993/94. Filtration rates, measured in a flow-through system, were calculated from the difference in particulate organic carbon (POC), nitrogen (PON) and chlorophyll-a (Chl-a) concentration in inflow and outflow water. Experiments were performed using natural sea water with POC, PON and Chl-a concentrations of about 450 μg/l, 90 μg/l and 2 μg/l, respectively. The biodeposition rate and the biochemical composition of the biodeposits were studied in order to detect how the organic matter is transformed through feeding activity of A. colbecki. At +1°C temperature, the average filtering rate was about 1 l h−1 g−1 (DW soft tissues) in specimens ranging in body mass from 2 to 3 g (DW soft tissues) and 6–7 cm long. The biodeposition rate in 3–8 cm long specimens, ranging from 0.4 to 5.7 g (DW soft tissues), was about 5.65 mg DW/g DW/day, leading to an estimate of Corg flux, through biodeposition by A. colbecki, of about 21 mg C m−2 day−1 at in situ conditions. Comparison between the biochemical composition of seston and biodeposits shows a decrease of the labile compounds, of the Chl-a/phaeopigments ratio in the biodeposits. The recorded C/N ratio decrease suggests a microbial colonisation in the biodeposits. This study suggests that Adamussium colbecki plays an important role in coupling the material fluxes from the water column to the sea bed, processing about 14% of total Carbon flux from the water column to the sediments, with an assimilation efficiency of 36%.  相似文献   

5.
Surfical sediments within Corunna Lake, a moderate size Intermittently Closed and Open Lake Lagoon (ICOLL), were examined for solid phase nutrient concentrations (TN, TP, TOC,) and solute exchange rates between the sediment and water column (O2, NO3–N, NH4–N, FRP, and N2). The surfical sediments in Corunna Lake contained high concentrations of TN (5 mg/g dry mass), total phosphorus (0.6 mg/g dry mass), and TOC (~ 5% dry mass). The carbon stable isotope ratio (δ13C) and TOC:TN ratios (δ13C ~ ? 24, TOC:TN ~ 11–14) demonstrated that the composition of the organic matter in the sediment was a mixture derived primarily of degraded planktonic matter. The close association between TP and Fe concentrations highlighted the potential role Fe plays in mediating Filterable Reactive Phosphorus (FRP) concentrations in the water column of Corunna Lake. In situ benthic chamber incubations were used to measure benthic fluxes. Solute exchange rates between the sediment and water column in Corunna Lake were similar to other reported studies (O2 = ? 469 to ? 1765 µmol m? 2 h? 1, NH4–N = 0.1–63 µmol m? 2 h? 1, NO2/NO3–N = 0 µmol m? 2 h? 1, FRP = ? 4–1.6 µmol m? 2 h? 1and N2 = 12–356 µmol m? 2 h? 1). As more carbon was deposited and mineralized the efficiency of the bacterial population to denitrify nitrogen in the sediment decreases. The linkage between land use and benthic biogeochemistry was also explored. A dairy farm exists in the middle catchment of Corunna Lake, and the receiving bay sediment consistently demonstrated the highest oxygen consumption rates in winter and spring (? 1408 µmol m? 2 h? 1 in winter, ? 1691 µmol m? 2 h? 1 in spring) and lowest denitrification efficiencies during summer (~ 3%). Nitrate/nitrite fluxes were not observed during any of the chamber incubations, with the concentrations of nitrate/nitrite being below detection limits (< 10 μg/L). Seasonal changes influenced the rates of solute exchange between the sediment and water column. Critical measures of solute exchange for NH4–N and biogenic N2 indicated that seasonal temperature changes play a significant role in mediating the reaction rates of sedimentary based biogeochemical processes. Measurable FRP fluxes were small but greater in the benthic sediments which received higher carbon inputs. Sediments have a high capacity to adsorb P which is released as sediment oxygen demand increases as a result of increases in labile carbon loads.  相似文献   

6.
Vertical flux of particulate material was recorded with moored sediment traps during 1988/1989 in the Greenland Sea at 72°N, 10°W. This region exhibits pronounced seasonal variability in ice cover. Annual fluxes at 500 m water depth were 22. 79, 8.55, 2.39, 3.81 and 0.51 g m−2 for total flux (dry weight), carbonate particulate biogenic silicate, particulate organic carbon and nitrogen, respectively. Fluxes increased in April, maximum rates of all compounds occurred in May–June, and consistently high total flux rates of around 100 mg m−2d−1 prevailed the summer. The increasing flux of biogenic particles measured in April is indicative of an early onset of algal growth in spring. Small pennate diatoms dominated in the trap collections during April, and were still numerous during the high flux period when Thalassiosira species were the most abundant diatoms. During May–June, up to 22% of the Thalassiosira cells collected were viable-looking cells. The faecal pellet flux increased after the May–June event. Therefore we conclude that the diatoms settled as phytodetritus, most likely in rapidly sinking aggregates. From seasonal nutrient profiles it is concluded that diatoms contribute 25% to new production during spring and 50% on an annual basis. More than 50% of newly produced silicate particles are dissolved above the 500 m horizon. High new production during spring does not lead to a pronounced sedimentation pulse of organic matter during spring but elevated vertical export is observed during the entire growth period.  相似文献   

7.
During both the spring- and the neap-tide periods of November 2005, quasi-simultaneous observations were carried out by six boats over 26 h at 12 stations in the Changjiang (Yangtze River) plume. The simultaneous observations provided the actual distribution isopleths of salinity and nutrients that displayed considerable intra-tidal variations at surface, especially in the southeastern section of the study area. The lack of synopticity in sampling might lead to large discrepancies of the interpolated contours of salinity from the actual distribution isopleths. No clear flood-ebb asymmetry of salinity stratification was observed; whereas at inner stations, surface-to-bottom bulk velocity difference (current layering) always tended to be greater during the ebb fraction of a semidiurnal cycle. At a given station, the weaker neap tides commonly induced stronger salinity stratification, less intra-tidal variability of salinity and nutrients, and less intrusion of bottom saltwater. Nutrients (SiO32?, NO3?, and PO43?) showed more nonconservative behaviors during the neap tides, presumably as a result of the prolonged residence time of seawater and decreased suspended particulate matter levels than during the spring tides.  相似文献   

8.
The modern hydrological regime of the Dead Sea is strongly affected by anthropogenic activity. The natural fresh water budget has changed mainly due to the drastic reduction of runoff. Since 1977, the surface level of the Dead Sea has been lowered by an average rate of about 60 cm/year and for the period from 1998 to 2000, the lowering rate has reached about 100 cm/year. As a result of the runoff reduction, the upper layer salinity of the Dead Sea has increased and the gravitational stability of the water body was diminished. Eventually, during the winter of 1978–1979, the lake waters overturned, bringing to an end the long-term stable meromictic1 hydrological regime. The lake entered a new phase in which its hydrological regime switches between holomictic and meromictic regimes, depending on the size of the runoff into the lake (i.e. the amount of precipitation in the lake's watershed). The first holomictic period, 1979–1980, lasted for 2 months only. It was succeeded by a 4-year meromictic period (1980–1983). The second holomictic period lasted for 9 years (1983–1991). The rainy winter of 1991–1992 resulted in an almost 2-m sea level rise. The upper layer with a relatively low salinity was restored and a new meromictic period persisted for 4 years, until winter 1995–1996. During the last meromictic period, the hydrological regime of the Dead Sea was characterized by following long-term trends: the depth of the summer thermocline increased from 12–15 to 25–30 m; the quasi-salinity of the upper layer, initially of about 164 kg/m3, increased rapidly at a rate of about 16–18 kg/m3/year; the quasi-salinity of the deep water, initially of about 235 kg/m3, decreased slowly at a rate of about 0.08–0.10 kg/m3/year (for the sake of comparison, a quasi salinity of 235 kg/m3 is the equivalent of 280‰ “usual” salinity); and the winter minimal temperature of the upper layer, initially of about 16 °C, increased rapidly at a rate of about 2 °C/year. In November 1995, the latest meromictic period of the Dead Sea came to an end. During the present holomictic period, 1996–2000, the hydrological regime of the Dead Sea is also characterized by long-term trends: the quasi-salinity of the entire Dead Sea increased at a rate of about 0.5 kg/m3/year, with practically no decrease during the winters; the temperature of the deep water mass increased with a rate of about 0.25 °C/year; and the period of vertical convection of the entire water column, initially about 3 months, increased at a rate of about 1 week/year. Moreover, we observed that the temperature and salinity of the bottom layer in the deepest part of the Dead Sea raised by about 0.5–0.6 °C and 0.15–0.25 kg/m3 during each holomictic summer.  相似文献   

9.
Depth profiles of heterotrophic bacteria abundance were measured weekly over a 6-month period from December to May in Franklin Bay, a 230 m-deep coastal Arctic Ocean site of the southeastern Beaufort Sea. Total bacteria, low nucleic acid (LNA) and high nucleic acid (HNA) bacteria abundances were measured using flow cytometry after SYBR Green I staining. The HNA bacteria abundance in surface waters started to increase 5–6 weeks after phytoplankton growth resumed in spring, increasing from 1 × 105 to 3 × 105 cells mL− 1 over an 8-week period, with a net growth rate of 0.018 d− 1. LNA bacteria response was delayed by more than two months relative to the beginning of the phytoplankton biomass accumulation and had a lower net growth rate of 0.013 d− 1. The marked increase in bacterial abundance occurred before any significant increase in organic matter input from river discharge (as indicated by the unchanged surface water salinity and DOC concentrations), and in the absence of water temperature increase. The abundance of bacteria below the halocline was relatively high until January (up to 5 × 105 cells mL− 1) but then decreased to values close to 2 × 105 cells mL− 1. The three-fold bacterial abundance increase observed in surface waters in spring was mostly due to HNA bacteria, supporting the idea that these cells are the most active.  相似文献   

10.
The diffusive and in situ fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA) have been measured and an estimation has been made of the water–atmosphere fluxes of CO2 in three estuarine systems of the Cantabrian Sea during the spring of 1998. Each of these systems undergoes a different anthropogenic influence. The diffusive fluxes of dissolved inorganic carbon and total alkalinity obtained present values ranging between 0.54–2.65 and 0.0–2.4 mmol m−2 day−1, respectively. These ranges are in agreement with those of other coastal systems. The in situ fluxes are high and extremely variable (35–284 mmol TA m−2 day−1, 43–554 mmol DIC m−2 day−1 and 22–261 mmol dissolved oxygen (DO) m−2 day−1), because the systems studied are very heterogeneous. The values of the ratio of the in situ fluxes of TA and DIC show on average that the rate of dissolution of CaCO3 is 0.37 times that of organic carbon oxidation. Equally, the interval of variation of the relationship between the benthic fluxes of inorganic carbon and oxygen (FDIC/FDO) is very wide (0.3–13.9), which demonstrates the different contributions made by the processes of aerobic and anaerobic degradation of the organic matter, as well as by the dissolution–precipitation of CaCO3. The water–atmosphere fluxes of CO2 present a clear dependence on the salinity. The brackish water of these systems (salinity<20), where maximum fluxes of 989 mmol m−2 day−1 have been estimated, act as a source of CO2 to the atmosphere. The more saline zones of the estuary (salinity>30) act as a sink of CO2, with fluxes between −5 and −10 mmol m−2 day−1.  相似文献   

11.
The objectives of the present study were to describe the species composition, diversity and distribution of the zoobenthic assemblages, to estimate the abundance and biomass of the dominant species, and to identify the main environmental factors determining the distribution patterns of the invertebrates from a freshwater to an estuarine zone in a temperate estuary of South America. The Río de la Plata estuary is a microtidal system characterized by a high concentration of suspended solids. Fifty-three taxa of meso- and macro-invertebrates were identified in the samples collected during November and December 2001. Molluscs, annelids, crustaceans and nematodes were found at 90% of the sampling sites. Molluscs comprised up to about 90% of the total zoobenthos biomass: the remaining percentage corresponded mainly to annelids and less to nematodes and crustaceans. An ecocline along the salinity gradient could be observed for the benthic assemblages from the freshwater to the estuarine zone in Rio de la Plata. A Canonical Correspondence Analysis shows that results from sampling sites in the outer zone were strongly related to salinity, depth and pH and less to oxygen and percentage of clay. The results from stations in the inner zone, and part of the middle zone, were mainly related to the occurrence of sand and contents of NH4+–N, NO3–N, and PO43−–P.  相似文献   

12.
Organic carbon budget for the Gulf of Bothnia   总被引:1,自引:0,他引:1  
We calculated input of organic carbon to the unproductive, brackish water basin of the Gulf of Bothnia from rivers, point sources and the atmosphere. We also calculated the net exchange of organic carbon between the Gulf of Bothnia and the adjacent marine system, the Baltic Proper. We compared the input with sinks for organic carbon; permanent incorporation in sediments and mineralization and subsequent evasion of CO2 to the atmosphere. The major fluxes were riverine input (1500 Gg C year− 1), exchange with the Baltic Proper (depending on which of several possible DOC concentration differences between the basins that was used in the calculation, the flux varied between an outflow of 466 and an input of 950 Gg C year 1), sediment burial (1100 Gg C year− 1) and evasion to the atmosphere (3610 Gg C year− 1). The largest single net flux was the emission of CO2 to the atmosphere, mainly caused by bacterial mineralization of organic carbon. Input and output did not match in our budget which we ascribe uncertainties in the calculation of the exchange of organic carbon between the Gulf of Bothnia and the Baltic Proper, and the fact that CO2 emission, which in our calculation represented 1 year (2002) may have been overestimated in comparison with long-term means. We conclude that net heterotrophy of the Gulf of Bothnia was due to input of organic carbon from both the catchment and from the Baltic Proper and that the future degree of net heterotrophy will be sensible to both catchment export of organic carbon and to the ongoing eutrophication of the Baltic Proper.  相似文献   

13.
We have studied the physicochemical and biological structure of a permanent filament off Cape Ghir (31°N) and estimated the transport of organic matter associated with it. The seaward filament exported coastal upwelled water, with low temperature and salinity and high organic matter, to the open ocean even in the absence of upwelling-favorable conditions. The estimated flux of excess organic carbon (the nonrefractory pool) expressed in annual basis yielded a value of 3.1×109 kg C, from which 90% was transported as dissolved organic carbon. This flux represents about 63% of the average annual primary production for the region of study. We conclude that the net-offshore transport may contribute to the enrichment of offshore oligotrophic waters throughout the year, partly explaining the metabolic imbalance found in open ocean waters of the subtropical Northeast Atlantic.  相似文献   

14.
Two state-of-the-art techniques were used to assess the impact of organic loading from fish farming in two fjords of Southern Chile, Pillan and Reñihue Fjords. A sediment profile imaging (SPI) camera was deployed and sediment microprofiles (oxygen, H2S, redox and pH) were measured in undisturbed sediment cores collected using a HAPS corer. Four out of seven stations in Pillan Fjord were found to be severely disturbed: SPI images showed azoic conditions (no apparent Redox Potential Discontinuity layer, no evidence of aerobic life form, presence of an uneaten fish food layer, negative OSI scores). These findings were corroborated by very high oxygen consumption rates (700–1200 mmol m− 2 day− 1), H2S concentrations increasing quickly within the sediment column and redox potential decreasing towards negative values within a few mm down core. Results for Reñihue Fjord were not so straightforward. SPI images indicated that most of the stations (R3 to R7) presented well-mixed conditions (high apparent RPD layers, presence of infauna, burrows, etc.), but oxygen profiles yielded consumption rates of 230 to 490 mmol m− 2 day− 1 and organic carbon mineralization of 2.16 to 4.53 g C m− 2 day− 1. These latter values were close to the limit of aerobic degradation of organic matter although no visible changes were recorded within the sediment column. In view of our findings, the importance of integrating multidisciplinary methodologies in impact assessment studies was discussed.  相似文献   

15.
Deep water samples (in contact with the sediment) were collected at eight different points of the estuary of the Nerbioi-Ibaizabal River (Bay of Biscay, Basque Country), both at low and high tides, during four sampling campaigns (May, September and December 2005 and March 2006). Superficial water was also sampled in March 2006. Temperature, pH, redox potential, dissolved oxygen and electrical conductivity corresponding to each sample were measured in situ at each sampling point using a multiparametric probe. The physico-chemical parameters found are typical of highly stratified estuaries, with an acceptable oxygenation level. After filtering and acidifying the samples, they were analysed by inductively coupled plasma/mass spectrometry (ICP/MS) to simultaneously determine the total concentration of Al, As, Cr, Cu, Fe, Mn, Ni and Zn. Concentrations in the μg kg− 1 level were found in all cases (cCr and cNi, 1–10; cAl, cAs and cZn, 10–50; cCu and cMn, 10–100 and cFe, 100–400 μg kg− 1). A probable net input of Al, Cr, Mn and Zn via the main (Nerbioi-Ibaizabal) and some of the tributary rivers (Galindo, Asua and Gobela) was identified. Evidence of a common source of Al and Zn to the estuary was found. Correlation analysis of data revealed connections between variables (concentration of Cu, Fe and As with salinity, as well as cAl with cZn, cCu with cFe, cAs with cFe, and cAs with cCu). Principal Component Analysis (PCA) of data allowed the samples to be grouped according to sampling campaign, with two principal components accounting for 62% of the total variance. In addition, plots of element concentration against salinity suggested a conservative behaviour for As, Cu and Fe and a non-conservative one for Cr. Not clear mixing behaviour was observed for the rest of elements.  相似文献   

16.
This is the first contribution to the copepod production in Venezuelan tropical savannas. Total abundance, biomass, production and mean P/B ratio of nauplii, copepodids and adults were determined in interdaily samples from a flooded, embanked savanna during February and March (end of dry season), and May (beginning of rainy season). Highest values of biomass and total production were recorded during dry season (61.5 mg m−3, 153.8 mg m−3 day−1, respectively), compared to the rainy season (5.6 mg m−3, 45.9 mg m−3 day−1). The last values are related to a low population density found during rainy season. Highest production were observed in copepodids at the end of the dry season. Significant differences of production between nauplii and copepodid stages, as well as between nauplii and adults, were also found.  相似文献   

17.
A new method to calculate the anthropogenic CO2 (ΔDICant) within the water column of the North Atlantic Ocean is presented. The method exploits the equilibrium chemistry of the carbonate system with reference to temperature, salinity and the partial pressure of atmospheric CO2 (pCO2,atm). ΔDICant is calculated with reference to the ventilation ages of water masses derived from tracer data and to the time history of pCO2,atm. The method is applied to data recorded during the WOCE program on the WHP A1/E transect in the North Atlantic Ocean, where we characterise six key water masses by their relationships of dissolved inorganic carbon (DIC) and apparent oxygen utilisation (AOU). The error in determining ΔDICant is reduced significantly by minimising the number of values referred to, especially by avoiding any use of remineralisation ratios of particulate organic matter. The distribution of ΔDICant shows highest values of up to 45 μmol kg−1 in the surface waters falling to 28–33 μmol kg−1 in the Irminger Sea west of the Mid-Atlantic Ridge. The eastern basin is imprinted by older water masses revealing decreasing values down to 10 μmol kg−1 ΔDICant in the Antarctic Bottom Water. These findings indicate the penetration of the whole water column of the North Atlantic Ocean by anthropogenic CO2.  相似文献   

18.
Summer hypoxia adjacent to the Changjiang Estuary   总被引:11,自引:0,他引:11  
Changjiang, the third largest runoff in the world, empties into the East China Sea from Shanghai, the fastest developing area of China. With the increasing nutrient load from the river, a severe hypoxia zone was found to about 2  104 km2. The mechanism of hypoxia formation adjacent to the Changjiang Estuary receives more and more attention from both scientists and managers. This paper discusses the relationship between hypoxia and the water masses, primary production, particulate material transport and the density stratification in these areas according to data obtained from a cruise in September, 2003. Hypoxia is formed by organic detritus decay. The particulate organisms do not mainly come from the Changjiang river, or from the dead algal deposed locally, but from the local benthic algae or particles advected from the south. Maintenance of hypoxia is due to the large density stratification caused by the significant salinity difference between the fresh plume and salty water from Taiwan Strait. This applies also to other estuaries with large runoff and rapid economic growth drainage, such as the Pearl River. It is suggested that the hypoxic zone here is much more sensitive than that outside Mississippi River. More cruises over different weather and tide conditions are needed to prove this hypothesis. Interdisciplinary research should be further developed in the future.  相似文献   

19.
The response of pore water oxygen, nitrate, sulfate, sulfide, ammonium and methane and particulate organic carbon distributions to the input of 8.5 million m3 (3.8×1012 g) of organic-rich waste materials is simulated. The deposit is assumed to be conical with a maximum thickness of approximately 20 m. Remineralization reactions within the deposit rapidly deplete any initially available pore water oxidants such as oxygen, nitrate and sulfate, and are subsequently dominated by fermentation reactions. Diffusion downward of reduced metabolites, sulfide, ammonium and methane, depletes the available oxidants in the pore waters below the waste pile, increasing the thickness of the anoxic layer. While the impacted region is limited to essentially the deposition site, recovery of the pore waters is estimated to be >104 years. The overall computational results are corroborated by the pore water distributions observed at turbidite boundaries. Numerous uncertainties in the parameterizations limit the overall accuracy of the calculations presented. The most significant of these are: (1) A quantitatively accurate assessment of the remineralization rate of the deposited organic matter including its rate of inoculation by abyssal microorganisms; (2) a detailed assessment of potential non-diffusive pore water transport processes including advection due to compaction and buoyancy-driven flows and enhanced exchange due to macrobenthic irrigation activities and (3) an assessment of the potential alteration of pore space and methane reactivity due to gas hydrate formation.  相似文献   

20.
The annual pattern of vertical particle flux in the Northeast Water (NEW) Polynya was recorded from August 1992 to July 1993 by means of moored time-series sediment traps. A distinct seasonal pattern in sedimentation was observed, with highest flux rates during August–October 1992. During this time 40–70% of the annual total sedimented matter (dry weight, DW) and the components, carbonate, particulate organic carbon and nitrogen (POC and PON), particulate biogenic silica (bPSi) and biogenic matter were recorded: 9.83, 2.04, 1.03, 0.69, 0.14 and 5.55 g m−2, respectively. Microscopic analysis of the particles revealed that diatoms contributed about 10% of the POC flux, but up to 40% of the POC flux originated from the houses and faeces of appendicularians during the period of highest flux rates. In contrast, faecal pellets were only a minor component of sedimenting POC after the opening of the polynya in June 1993. During this period a sedimentation event of Melosira arctica dominated the microscopically recognizable fraction of the POC. Following the low winter values a significant deviation in POC flux in March documented an early onset of plankton growth and a rapid response to the formation of a winter polynya paralleled by a local change in ice conditions. This was supported by the stable nitrogen isotope signature of the sedimented matter, also indicating an early onset of plankton production in the NEW Polynya. However, the overall amplitude of the Δ15N signal in the sinking particles showed only small variations (<4‰) and was significantly below the amplitude observed in sedimented material from the Northern North Atlantic ( 8‰). The composition of the sedimented matter, comprising mainly fast sinking particles (appendicularian houses, faecal peliets and Melosira aggregates) lead us to conclude that sedimentation in the NEW Polynya was spatially heterogeneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号