首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The free surface flow generated by twin-cylinders in forced motion submerged beneath the free surface is studied based on the boundary element method. Two relative locations, namely, horizontal and vertical, are examined for the twin cylinders. In both cases, the twin cylinders are starting from rest and ultimately moving with the same constant speed through an accelerating process. Assuming that the fluid is inviscid and incompressible and the flow to be irrotational, the integral Laplace equation can be discretized based on the boundary element method. Fully-nonlinear boundary conditions are satisfied on the unknown free surface and the moving body surface. The free surface is traced by a Lagrangian technique. Regriding and remeshing are applied, which is crucial to quality of the numerical results. Single circular cylinder and elliptical cylinder are calculated by linear method and fully nonlinear method for accuracy checking and then fully nonlinear method is conducted on the twin cylinder cases, respectively. The generated wave elevation and the resultant force are analysed to discuss the influence of the gap between the two cylinders as well as the water depth. It is found that no matter the kind of distribution, when the moving cylinders are close to each other, they suffer hydrodynamic force with large absolute value in the direction of motion. The trend of force varying with the increase of gap can be clearly seen from numerical analysis. The vertically distributed twin cylinders seem to attract with each other while the horizontally distributed twin cylinders are opposite when they are close to each other.  相似文献   

2.
3.
有限水深中垂直下潜弹性薄板的水波散射(英文)   总被引:1,自引:0,他引:1  
The problem of water wave scattering by a thin vertical elastic plate submerged in uniform finite depth water is investigated here.The boundary condition on the elastic plate is derived from the Bernoulli-Euler equation of motion satisfied by the plate.Using the Green’s function technique,from this boundary condition,the normal velocity of the plate is expressed in terms of the difference between the velocity potentials(unknown)across the plate.The two ends of the plate are either clamped or free.The reflection and transmission coefficients are obtained in terms of the integrals’involving combinations of the unknown velocity potential on the two sides of the plate,which satisfy three simultaneous integral equations and are solved numerically.These coefficients are computed numerically for various values of different parameters and depicted graphically against the wave number in a number of figures.  相似文献   

4.
In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by usethe of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.  相似文献   

5.
能量耗散效应的多域边界元法(英文)   总被引:1,自引:0,他引:1  
The wave diffraction and radiation around a floating body is considered within the framework of the linear potential theory in a fairly perfect fluid.The fluid domain extended infinitely in the horizontal directions but is limited by the sea bed,the body hull,and the part of the free surface excluding the body waterplane,and is subdivided into two subdomains according to the body geometry.The two subdomains are connected by a control surface in fluid.In each subdomain,the velocity potential is described by using the usual boundary integral representation involving Green functions.The boundary integral equations are then established by satisfying the boundary conditions and the continuous condition of the potential and the normal derivation across the control surface.This multi-domain boundary element method(MDBEM) is particularly interesting for bodies with a hull form including moonpools to which the usual BEM presents singularities and slow convergence of numerical results.The application of the MDBEM to study the resonant motion of a water column in moonpools shows that the MDBEM provides an efficient and reliable prediction method.  相似文献   

6.
A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The discontinuity arises due to the floating of two semi-infinite inertial surfaces of different surface densities. Applying Green’s second identity to the potential functions and appropriate Green’s functions, this problem is reduced to solving two coupled Fredholm integral equations with regular kernels. The solutions to these integral equations are used to determine the reflection and the transmission coefficients. The results for the reflection coefficient are presented graphically and are compared to those obtained earlier using other research methods. It is observed from the graphs that the results computed from the present analysis match exactly with the previous results.  相似文献   

7.
Scattering of surface waves by the edge of a small undulation on a porous bed in an ocean of finite depth, where the free surface has an ice-cover being modelled as an elastic plate of very small thickness, is investigated within the framework of linearized water wave theory. The effect of surface tension at the surface below the ice-cover is neglected. There exists only one wave number propagating at just below the ice-cover. A perturbation analysis is employed to solve the boundary value problem governed by Laplace's equation by a method based on Green's integral theorem with the introduction of appropriate Green's function and thereby evaluating the reflection and transmission coefficients approximately up to first order. A patch of sinusoidal ripples is considered as an example and the related coefficients are determined.  相似文献   

8.
Many wave energy conversion devices have not been well received. The main reasons are that they are too complicated and not economical. However, in the last two decades direct conversion systems have drawn the attention of researchers to their widely distributed energy source due to their simple structure and low cost. The most well-known direct conversion systems presently in use include the Archimedes Wave Swing (AWS) and Power Buoy (PB). In this paper, these two systems were simulated in the same conditions and their behaviors were studied in different wave conditions. In order to verify the simulations, results of the generator of the finite element computations were followed. An attempt was made to determine the merits and drawbacks of each method under different wave conditions by comparing the performance of the two systems. The wave conditions suitable for each system were specified.  相似文献   

9.
In thispaper, the effects of a rigid baffle on the seismic response of liquid in a rigid cylindrical tank are evaluated. A baffle is an annular plate which supplies a kind of passive control on the effects of ground excitation. The contained liquid is assumed incompressible, inviscid and has irrotational motion. To estimate the seismic response, the method of superposition of modes has been applied. To analyze the rigid tank response, Laplace's equation is considered as the governing equation of the fluid domain, in both time and frequency domains. The boundary element method (BEM) is employed to evaluate the natural modes of liquid in a cylindrical tank. To gain this goal, the fluid domain is divided into two upper and lower parts partitioned by the baffle. Linearized kinematic and dynamic boundary conditions of the free surface of the contained liquid have been considered.  相似文献   

10.
A numerical analysis based on the boundary element method (BEM) was presented for the hydrodynamic performance of a high skew propeller (HSP) which is employed by an underwater vehicle (UV). Since UVs operate at two different working conditions (surface and submerged conditions), the design of such a propeller is a cumbersome task. This is primarily due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different. Therefore, some factors are necessary for the design of the optimum propeller to utilize the power at the mentioned conditions. The design objectives of the optimum propeller are to obtain the highest possible thrust, minimum torque, and efficiency. In the current study, a 5-bladed HSP was chosen for running the UV. This propeller operated at the stern of the UV hull where the inflow velocity to the propeller was non-uniform. Some parameters of the propeller were predicted based on the UV geometrical hull and operating conditions. The computed results include the pressure distribution and the hydrodynamic characteristics of the HSP in open water conditions, and comparison of these results with those of the experimental data indicates good agreement. The propeller efficiency for both submerged and surface conditions was found to be 67% and 64%, respectively, which compared to conventional propellers is a significantly higher efficiency.  相似文献   

11.
The second-order diffraction problem by a piston-like arrangement that consists of two concentric surface piercing cylinders is considered. The developed matched axisymmetric eigenfunction expansion solution methodology in cylindrical co-ordinates is based on the semi-analytical formulation of the velocity potentials in the various fluid regions which are defined by the geometry of the two-body arrangement. The main difficulty associated with the specific configuration originates from the fact that the geometry defines two fluid regions that extend up to the free surface in which the inhomogeneous second-order free surface boundary condition has to be fulfilled. To this end the associated velocity potentials in these regions are decomposed into a number of components defining the so-called ‘free’ and ‘locked’ waves. The latter are calculated by solving the resulting Sturm–Liouville problems. The seek second-order velocity potential in the whole fluid domain is then derived by enforcing matching conditions for the radial velocities and the fluid pressures at the cylindrical boundaries of adjacent fluid domains. Numerical results concerning the second-order hydrodynamic loading and the wave run-up on the cylinders are given, whereas special attention is given at incident wave frequency regions where the first-order exciting wave forces attain maximum values due to the resonant fluid motions in the moonpool.  相似文献   

12.
We solve the problem of wave scattering by multiple floating elastic plates with arbitrary boundary conditions, such as spring connectors or hinges at the plate edges. We present two solution methods, the first method is based on a matched eigenfunction expansion and the second uses a Green function. The matched eigenfunction expansion method allows arbitrary parameters for a given plate and also allows regions of open water. The Green function method requires that all plate properties must be uniform except plate length and the plate must cover the entire free surface. The Green function method is much less computationally demanding than the matched eigenfunction method and provides a test of accuracy. A range of results are presented, which show that the behaviour of the plate depends strongly on the boundary conditions at the plate edges.  相似文献   

13.
The free surface flow generated by twin-cylinders in forced motion submerged beneath the free surface is studied based on the boundary element method. Two relative locations, namely, horizontal and vertical, are examined for the twin cylinders. In both cases, the twin cylinders are starting from rest and ultimately moving with the same constant speed through an accelerating process. Assuming that the fluid is inviscid and incompressible and the flow to be irrotational, the integral Laplace equation can be discretized based on the boundary element method. Fully-nonlinear boundary conditions are satisfied on the unknown free surface and the moving body surface. The free surface is traced by a Lagrangian technique. Regriding and remeshing are applied, which is crucial to quality of the numerical results. Single circular cylinder and elliptical cylinder are calculated by linear method and fully nonlinear method for accuracy checking and then fully nonlinear method is conducted on the twin cylinder cases, respectively. The generated wave elevation and the resultant force are analysed to discuss the influence of the gap between the two cylinders as well as the water depth. It is found that no matter the kind of distribution, when the moving cylinders are close to each other, they suffer hydrodynamic force with large absolute value in the direction of motion. The trend of force varying with the increase of gap can be clearly seen from numerical analysis. The vertically distributed twin cylinders seem to attract with each other while the horizontally distributed twin cylinders are opposite when they are close to each other.  相似文献   

14.
基于线性势流理论和匹配特征函数展开法,建立了斜向波与内部带水平多孔板开孔沉箱防波堤相互作用的解析解。通过与分区边界元解对比,验证了解析解计算结果的正确性。给出数值算例,分析了波浪入射角度、消浪室相对宽度等因素对开孔防波堤反射系数和波浪力的影响规律。研究结果可为物理模型试验和工程应用提供指导。  相似文献   

15.
Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/infrastructures in coastal environment.  相似文献   

16.
准确模拟波浪在多孔介质中传播变形对于研究抛石防波堤等结构的消能作用是十分必要的。对Laplace方程、自由表面处的运动学方程和动力学方程以及海底运动学方程进行无因次化,且以自由表面处速度势为切点,进行幂级展开,最终给出4个不同的高阶Boussinesq水波方程。在常水深下对这些方程的一维问题进行了理论研究,并将无因次相速度和无因次虚波数与解析解结果进行对比,方程的相速度与解析解吻合程度较好,虚波数与解析解基本吻合,表明高阶Boussinesq方程可用于模拟波浪在多孔介质中的传播变形。  相似文献   

17.
The problem of the interaction of multiple cylinders oscillating in waves and slow current is considered. The interaction is represented by waves emitted from adjacent cylinders towards the cylinder under consideration. Wave drift forces and moment in the horizontal plane are calculated by the far-field method based on the conservation of momentum or angular momentum. A semianalytical formula for the calculation of the wave drift damping is then deduced. The conservation of the integrals in these formulae is proved. Special treatments to improve the accuracy of results are discussed. Comparisons between calculated results and experimental measurements are made, showing satisfactory agreement. Effects of various combinations of current direction and incident wave angle on the wave drift damping and damping moment are also examined.  相似文献   

18.
文章基于势流理论对全非线性的三维数值水池进行了模拟,其控制方程由无奇异边界积分方程法(Desingularized Boundary Integral Equation Method,DBIEM)进行离散求解,在求解全非线性的自由面微分方程时,文中采用混合欧拉—拉格朗日法(Mixed Eulerian-Lagrangian,MEL)和四阶Adams-Bashforth-Moulton(ABM4)预报—修正方法,为了避免结果发散即增强数值稳定性,文中采用B样条法来光顺波面.同时,在远方辐射控制面上采用多次透射公式方法(Multi-transmitting Formula,MTF)来进行消波,文中得到的结果与理论解进行了比较,结果表明该方法可用来有效模拟全非线性的数值波浪水池.  相似文献   

19.
Porous structures have been widely applied in the coastal and ocean engineering due to their wave energy dissipation mechanism. The macroscopic computational fluid dynamics (CFD) approach where the quadratic pressure drop condition of porous surface is introduced to model the wave interaction with porous cylinders. A series of CFD simulations of waves interacting with a single porous cylinder and the combined structure of a porous cylinder with a concentric inner solid column are performed, with corresponding tank tests conducted. The CFD method is compared with experiments, linear potential model, and the quadratic BEM (boundary element method) model. The effects of porosity and porous cylinder radius on wave force and wave heights inside porous cylinder are analyzed to evaluate the performance of porous shell reducing wave loads and wave surface elevation, and the wave force variation with incident wave amplitudes are also investigated. The results demonstrate that the established CFD model is reliable for engineering analysis and thereby being of great significance for reference purpose in the CFD simulations of waves interacting with porous structures.  相似文献   

20.
研究了斜向波与无限多开孔沉箱的相互作用。依照结构物的几何形状,整个流域被分成无限多个子域,在每个子域内应用特征函数展开法求解速度势。对于沉箱内的波浪运动,引入相位差概念;同时,在构造反射波模型时,考虑了结构物的几何形状影响。进行了数值试验,分析了开孔沉箱水平波浪力及横隔板受力特点,详细讨论了波浪入射频率、入射角度、相对消浪室宽度及开孔影响系数对开孔沉箱波浪力的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号