首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sandwich pipes have been studied as one option to overcome the high pressure problems in deep and ultra-deep waters. They have become a possible alternative solution for submarine infrastructure due to its thermal insulation capacity. This contribute to preventing the pipeline from clogging due to the difference in temperature between reservoir fluids and water at the bottom of the sea. The pipelines in ultra-deepwater are continually exposed to severe operating conditions, such as the effect of high levels of external pressure that can cause local deformation or even collapse of the pipe. Thus, a greater understanding of the mechanical behavior of sandwich pipes is required. This paper presents a FEM-based evaluation of friction and initial imperfection effects on sandwich pipes local buckling. The non-linear evaluation was carried out in FEM of local buckling of two sandwich pipes, with polypropylene and cement as filled annular material. The influence of initial imperfections and the degree of friction, between the annular material and the steel pipes, as well as geometric variations of the pipe were considered. The numerical simulations results indicate a capacity to withstand ultra-deep waters collapsing pressures, around 3000 m, either for polypropylene or cement filled annular material model. In addition, the results indicate that the collapse pressure is inversely proportional to the increase in annular thickness and directly proportional to the decrease in friction which have an impact and contribution on the carrying capacity of the sandwich pipe. Further research will consider a design of experiments analysis of reported effects for different diameter-to-thickness ratios.  相似文献   

2.
The use of high performance structural composites has become very important over the last decades, especially where weight is an essential factor. Particularly in the oil and gas industry, several designs of composite pipes for deep water applications have been recently proposed as competitive solutions against traditional steel pipes. Thus, it is important to assess the performance of composite pipes under high external pressure in order to avoid pipe failure or overconservative designs. In this paper, experimental tests of different composite pipe configurations are performed and then compared to analytical and numerical predictions. Unlike the case of internal pressure loads, the collapse pressure of composite pipes depends on the initial ovality and on the ply stacking sequence. The collapse resistance of different composite pipes is firstly studied through simplified analytical equations combined with different failure criteria. Then, a finite element model is developed using a progressive failure criterion [1]. Both analytical and numerical failure predictions were compared to experimental tests carried out on four composite pipes produced with different ply stacking sequence by the filament winding method [2]. An experimental-numerical-analytical comparison shows that numerical and analytical models provide results in good agreement with those obtained experimentally. Finally, a parametric analysis is carried out to show the effect of ovality and ply stacking sequence on the failure pressure of composite pipes.  相似文献   

3.
The accurate assessment of the remaining strength of corroded pipes is a subject that has been increasingly investigated over the past decades. This is because of the risk of significant social, economic, and environmental effects that may be caused by an accident. The finite element method has been successfully used to predict the collapse pressure considering external load. It was also used in this study. The literature primarily focused on the corroded pipes subjected to internal pressure. In this study, the out-of-roundness (ovalization) of the pipe was considered to evaluate the collapse pressure. Uncertainties should be incorporated into a computational model to assess the reliability of corroded pipes. Three methods for evaluation of the probability of failure were used: the first-order reliability method (FORM), traditional Monte Carlo (MC), and a new proposed methodology that combines MC results with the kernel density estimation method (MCkde). The probability of failure of ovalized corroded pipes subject to external pressure was computed. The results exhibited a good agreement between FORM and MCkde method. The statistical importance of each random variable was observed and the results were compared with those from intact ovalized pipes. The computation cost of the MC method with numerical simulation limits its use to the application under study. Solutions using the FORM and MCkde methods exhibited good agreement with those of the full MC method. However, the computational effort of the latter was independent of the stochastic dimension, and it was a derivative-free method. As expected, in general, the solutions based on empirical methods were conservative.  相似文献   

4.
Structural pipe-in-pipe cross sections have significant potential for application in offshore oil and gas production systems because they combine thermal insulation performance with structural strength and self weight in an integrated way. Such cross sections comprise inner and outer thin-walled pipes with the annulus between them fully filled by a selectable filler material to impart an appropriate combination of properties. Structural pipe-in-pipe cross sections can exhibit several different collapse mechanisms, and the basis of the preferential occurrence of one over the others is of interest. This article presents an exact analysis for predicting the elastic buckling behaviours of a structural pipe-in-pipe cross section when subjected to external hydrostatic pressure. Simplified approximations are also investigated for elastic buckling pressure and mode when the outer pipe and its contact with the filler material is considered as a pipe on an elastic foundation. Results are presented to show the variation of elastic buckling pressure with the relative elastic modulus of the filler and pipe materials, the filler thickness, and the thicknesses of the inner and outer pipes. Case studies based on realistic application scenarios are used to show that the simplified approximations are sufficiently accurate for practical structural design purposes.  相似文献   

5.
Helically armored cables or pipes find a wide range of applications as structural members in engineering. An example of this is the increasing use of flexible pipes in the oil offshore production. Although keeping a geometrical similarity with other helically armored structures such as wire ropes and ACSR conductors, and borrowing from them a useful methodology for the structural analysis, some care must be taken in order not to indiscriminately use an approach which was not thought for a flexible pipe: internal and external pressures, for instance, are a great concern in the analysis of flexible pipes, but obviously not for wire ropes. This work aims at giving some additional contribution to the structural response of flexible pipes when subjected to axisymmetric loads, including the effect of both internal and external pressure in pipe displacements. Derivation of linear operators, relating the stress-resultants to their related displacements or deformations in each of the layers of the pipe, as well as the process of deriving an analogous linear operator to represent the behavior of the pipe as a whole, are clearly presented, highlighting interesting mathematical aspects and their associated physical meaning. A numerical case study of a 2.5″ flexible pipe subjected to traction and internal pressure is also presented and discussed.  相似文献   

6.
林珊颖  白勇  马刚  姚登樽  刘畅 《船舶力学》2016,20(12):1595-1603
复合材料管已成为管道发展的热点和趋势。文中对钢带软管在同时受到内压和弯曲组合载荷作用下的力学性能进行了研究。基于建立的钢带软管的环向和径向力学平衡方程,提出了不同弯曲半径下该种类型管道的爆破压力理论计算方法。文中还进行了有限元数值模拟,并与理论计算结果对比分析,分析结果表明文中提出的爆破压力计算方法可作为此类管在同时受到内压及弯曲组合载荷作用下的通用算法,为解决此类工程问题提供重要参考。  相似文献   

7.
This article studies the structural response of a 6.0” flexible pipe under pure tension considering intact and damaged conditions. In the damaged condition, several wires of the tensile armor layers are assumed to be broken. A three-dimensional nonlinear finite element (FE) model devoted to analyze the local mechanical response of flexible pipes is employed in this study. This model is capable of representing each tensile armor wire and, therefore, localized defects, including total rupture, may be adequately represented. Results from experimental tests validate the FE predictions and indicate a reduction in the axial stiffness of the pipe, a non-uniform redistribution of forces among the remaining intact wires of the damaged tensile armor layers and high stress concentrations in the wires near the broken ones. Moreover, the FE model indicates that significant normal bending stresses may arise in the pressure armor and inner carcass due to an uneven pressure distribution on these layers. Finally, the results obtained are employed to estimate the pull out capacity of the studied flexible pipe.  相似文献   

8.
To address the weight and corrosion challenge in deep-water, replacing the steel tensile armour in flexible pipes with composite materials is an alternative conceptual approach. An axisymmetric structural responses model is built for this novel composite armoured flexible pipe, with interlayer gaps that may occur in the unbonded structure considered through an iterative algorithm. The tensile strength of steel and composite armoured pipes are predicted based on different constitutive relations of steel and composite. Essential quantities are obtained, such as tensile stiffness, deformations of each layer and interlayer gaps or contact pressures. Considering the helix form of carcass and pressure armour, a finite element model is established for the verification of the theoretical model. Case study shows that the tensile stiffness of flexible pipe is overestimated with the interlayer gap ignored. Compared with steel armoured flexible pipe, the composite armoured pipe, whose tensile stiffness decreases less as external pressure increases, meanwhile has higher values of tensile ultimate strength and torsion stiffness. Some suggestions about fiber types and volume fraction for composite tensile strips are given to ensure good performance of axial tensile strength and stiffness.  相似文献   

9.
《Marine Structures》2006,19(4):193-216
The use of a pipe subject to bending moment with an equivalent plate subject to tension has been tried by a few researchers to avoid the complexity usually involved with experimental crack growth investigations of pipes with initial surface flaws. This approach also minimizes the use of more sophisticated monitoring instruments, thereby offering significant cost savings. This equivalency has been done for both experimental and finite element investigations. This paper studies the validity of this approach and evaluates the ranges of the crack depth ratio and elliptical crack diameter ratio for which this approach would be admissible. A series of finite element analysis was carried out to both verify the values of the stress intensity factors reported in the literature, and verify the results of the interpolation function used in the computational simulation in this research. Based on the computational simulations and demonstrating that the crack front follows a semi-circular shape during its growth, a dimensionless relationship between the stress intensity factor of a pipe under bending moment and that of a plate under pure tension has been introduced. A series of experimental investigation was performed to verify the validity of the proposed computational simulation. The results show the rationality and admissibility of this approach when considering the fatigue crack growth of pipes under bending.  相似文献   

10.
为研究船舶中复合材料充液管路的减振特性,首先采用几何尺寸相同的复合材料直管和钢直管进行振动响应对比分析。通过直管的四端阻抗测试,获得2种材料直管的传递矩阵,对比分析复合材料管路与钢管的振动传递损失。然后对2种材料直管进行自由边界下的模态测试,获取管路的阻尼系数。试验结果表明:在满足输水性能和结构强度的前提下,复合材料管路只是同几何尺寸钢管质量的一半,复合材料管的固有模态频率要低于钢管,模态阻尼系数却远大于钢管。在2500 Hz内复合材料管的横向振动传递损失优于钢管;而轴向传递损失在低频段要劣于钢管,高频段又优于钢管。因此在减振性能上,复合材料管更利于振动能量在传播过程中的衰减。研究成果可为复合材料在船舶充液管路减振降噪中的应用提供参考。  相似文献   

11.
为解决某船用柴油机燃油管系低压管路振动强烈问题,实船测量了燃油管路和主机振动、燃油脉冲压力和管路固有频率,确定喷油泵柱塞间隙性进、回油诱导管路内燃油压力脉动是激励管路振动的主要原因。从结构和流体两个角度分析了管系减振的方法,通过加焊马脚改变管系的刚度和加装阻尼器降低燃油脉冲强度两种方法来降低管路的振动。试验结果表明,两种方法皆有效地降低了管路的振动,特别是阻尼器从源头降低燃油脉冲能量的减振效果更明显。  相似文献   

12.
A new look at the external pressure capacity of sandwich pipes   总被引:1,自引:0,他引:1  
Sandwich Pipes (SPs) have been developed to overcome the required flow assurance and pressure capacity issues in deep and ultra-deep waters. This research aims at studying the influence of certain structural parameters on the pressure capacity (also referred to as the plastic buckling pressure) of Sandwich pipelines. The use of high grade steel pipes, as the internal or external pipes, has also been considered as one of the design parameters in this study. Moreover, a comprehensive parametric study, considering a practical range of the parameters that influence the response of SPs (and considering 3840 SP configurations) was conducted. The results from this large array of pipes were used to formulate a practical equation, capable of estimating the plastic buckling pressure of SPs. The accuracy of the proposed equation was evaluated by comparing the results with the experimental and numerical results available in the literature. The comparative results demonstrated that the proposed equation could predict the buckling capacity of such pipes with a reasonable accuracy. Furthermore, the proposed equation was used, along with a general optimization procedure, to establish the most optimum and cost-effective combination of structural parameters for SPs suitable for use in various water depths.  相似文献   

13.
Dynamic behavior and instability of clamped-clamped pipes conveying fluid with longitudinal fins are studied in this paper. The analysis is done for pipes made of both homogeneous and functionally graded materials (FGM). In the FGM case, the materials of pipe and fins are assumed to be graded through the radial direction based on a power-law distribution. The Hamiltonian principle and Euler-Bernoulli beam assumptions are employed to derive the governing differential equations of the pipe system. Different fin configurations are investigated and the effects of several parameters including power‐law index, fluid velocity, number of fins, thickness and height of the fins are analyzed. Natural frequencies of the pipe and critical flow velocities are determined for various values of parameters. Numerical results show that the stability of the system is significantly affected by the power‐law index and fin dimensions. Among different fin configurations studied in this paper, the addition of non-horizontal fins provides significant improvement in the stability of both homogeneous and FGM pipes conveying fluid and consequently, can be considered as an effective “dynamic stabilizer” for the pipe system. In contrast to non-horizontal fins, the horizontal fins improve the stability of pipes conveying fluid, slightly.  相似文献   

14.
Flexible pipes are commonly exposed to damages on the outer layers due to abrasion with seafloor or improper installation and operation, which may render them vulnerable to birdcaging failures. This paper presents a finite element model for the residual axial compressive strength evaluation of a flexible pipe with local damage on the outer layers. The elastoplastic nonlinearity of tensile armour steel layers and hyperelasticity of polymeric outer sheath are taken into account. This model is verified against existing test data. Parametric studies are then performed by varying the damage size in either the pipe axial or circumferential directions. The flexible pipe axial resistance, deformations, as well as the tensile armour wires layers stress states near the damaged section under different damage and axial compression conditions are discussed. The case studies show that damage on the outer layer, especially the anti-birdcage tape layer, is highly detrimental to flexible pipe residual strength against axial compression. The present results and discussions are instructive in understanding the flexible pipe birdcaging mechanism.  相似文献   

15.
以某型热动力鱼雷能供系统为研究对象,对鱼雷舷外海水通过雷体上的背压阀直接进入燃料舱增压挤代燃料的工作过程,能供系统管路充填过程及燃料供应过程进行了分析,建立了供油系统管路数学模型,并进行了数字仿真。仿真结果表明,对现有结构的某型鱼雷能供系统,燃料舱从常压增至当地海不压力需一定时间;在动力装置启动初始阶段,燃料泵前及燃料泵通油口咱有可能产生气穴现象。  相似文献   

16.
弧形体挠性接管力学模型及平衡性研究   总被引:1,自引:0,他引:1  
提出了新型弧形挠性接管结构模型,建立了弧形挠性接管数学模型,对其进行了内压作用下的应力分析;对弧形挠性接管平衡性进行了深入研究,推导出管体骨架缠绕的平衡角公式,并对平衡角公式的正确性进行了验证.  相似文献   

17.
大压差工况下,船舶内部液舱自流注水时管路振动噪声问题突出。采用有限体积法离散大涡模拟的流体控制方程,计算分析典型工况下注水系统管内流场。考虑管内液体对管道结构振动的影响,计算注水管路的“湿模态”。以管路壁面流体压力脉动作为激励源,基于有限元法对流固耦合作用下管道结构的振动和流激振动辐射噪声进行数值模拟。对阀门上下游不同监测点的流激振动噪声频谱进行分析,探究管路流激振动噪声产生、传播和衰减规律。分析结果表明:注水系统管道结构流激振动噪声沿管道传播基本无衰减;流激振动噪声频带较宽,主频率为80 Hz;管道结构的流激振动噪声整体幅值较大,需要采取增加弹性管卡等措施进行治理。  相似文献   

18.
根据规范ASME 31.4中对压力管道的要求,利用管道应力分析软件AutoPipe建立了清管球收发筒的模型,并对其进行了较为细致全面的应力分析,得到收发筒在试压工况下的一次应力分析、二次应力分析结果,并找出了应力关键点,校核了收发筒的强度。结果表明,在内压较高的情况下,内压是产生一次应力的主要因素,而温度和收发筒自重则对应力影响较小。分析结果对实际工程中相关管道的应力分析有一定的借鉴意义。  相似文献   

19.
对营口港某码头的腐蚀与防护状况进行了调查,调查内容包括钢管桩外观状况、涂层厚度、壁厚、保护电位和阴极保护系统等。结果表明,大部分钢管桩整体状态良好,无明显的涂层破损和局部腐蚀,壁厚和涂层厚度满足要求,保护电位正常。但少部分钢管桩存在涂层的局部破损,部分钢管桩因整流器损坏或输出电流偏低导致保护电位不足。  相似文献   

20.
Flexible pipes are key equipment for offshore oil and gas production systems, conveying fluids between the platform and subsea wells. The structural arrangement of unbonded flexible pipes is quite complex, encompassing several layers with polymeric, metallic and textile materials. Different topologies and a large amount of intricate nonlinear contact interactions between and within their components, especially because of the relative stick-slip mechanism during bending, makes numerical analysis challenging. This paper presents an alternative three-dimensional nonlinear finite element model that describes the response of flexible pipes subjected to combined axisymmetric and bending loads. To simulate the response of a flexible pipe under axial tension or compression combined with uniform curvature, an equivalent thermal loading is employed on the external sheath, which is modelled as an orthotropic thermal expansion material with temperature-independent mechanical properties. To assess the feasibility of the proposed model, the bending moment versus curvature of the finite element solution is compared with experimental results obtained in literature and good agreements are found between them. Detailed finite element results such as contact pressures, armour wire slip displacements and friction, normal and transverse bending stresses are also shown and compared with available analytical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号