首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Particulate organic matter (POM), nutrients, chlorophyll-a (CHL) and primary production measurements were performed in the upper layer of three different regions (cyclonic, anticyclonic and frontal+peripherial) of the NE Mediterranean Sea in 1991–1994. Depth profiles of bulk POM exhibited a subsurface maximum, coinciding with the deep chlorophyll maximum (DCM) established near the base of the euphotic zone of the Rhodes cyclone and its periphery, where the nutricline was situated just below the euphotic zone for most of the year. Moreover, the POM peaks were broader and situated at shallower depths in late winter–early spring as compared to its position in the summer–autumn period. Under prolonged winter conditions, as experienced in March 1992, the characteristic POM feature disappeared in the center of the Rhodes cyclone, where the upper layer was entirely occupied by nutrient-rich Levantine deep water. Deep convective processes in the cyclonic gyre led to the formation of vertically uniform POM profiles with low concentrations of particulate organic carbon (POC) (2.1 μM), nitrogen (0.21 μM), total particulate phosphorus (PP) (0.02 μM) and chlorophyll-a (0.5 μg/L) in the euphotic zone. Though the Levantine deep waters ascended up to the surface layer with the nitrate/phosphate molar ratios (28–29) in March 1992, the N/P molar ratio of bulk POM in the upper layer was low as 10–12, indicating luxury consumption of phosphate during algal production. Depth-integrated primary production in the euphotic zone ranged from 38.5 for oligotrophic autumn to 457 mg C m−2 day−1 for moderately mesotrophic cool winter conditions.  相似文献   

2.
Absolute values of chlorophyll a concentration and its spatial and seasonal variations in the Black Sea were assessed by using satellite CZCS and in situ data. Since the satellite CZCS had operated for the 1978–1986 period, CZCS data was used for assessing the past state of the Black Sea just before the onset of drastic changes observed in late 1980s. The approach used for the calculation of the absolute values of chlorophyll a concentration from CZCS data was based on the direct comparison of in situ chlorophyll a data and those of CZCS and by applying the algorithm developed for the transformation of CZCS data into chlorophyll a values. CZCS Level 2 data related with pigment concentration having a spatial resolution of 1 km at nadir were used. The daily Level 3 files were derived by binning Level 2 values into 4-km grid cells and the monthly and seasonal Level 3 files were created by averaging the daily Level 3 files over the corresponding period. In situ chlorophyll a data were obtained by spectrophotometric and fluorometric methods in 15 scientific cruises over the 1978–1986 period. Total number of ship-measured data used for the comparison with those CZCS values was 590.Chlorophyll a concentration (Chl) was derived from CZCS values (C) with regression equations Chl=kC; the coefficient of transformation k was calculated from six different data sets by taking into account distinctions between subregions and seasons. The reasons for difference in the k values have been analyzed.Statistical comparison of the chlorophyll a values measured in situ and those derived from CZCS data was based on log-transformed data and gave the following results: regression SLOPE=0.842, regression INTERCEPT=−0.081, coefficient of determination (R2)=0.806, root–mean–square ERROR=0.195. The mean monthly chlorophyll a distributions derived from CZCS data over 1978–1986 have been constructed and the mean seasonal chlorophyll a values in different regions have been calculated and analyzed. The significant difference in chlorophyll concentration between the western shelf regions and the open part of the Black Sea has been demonstrated, especially in warm season. At almost all seasons, the highest chlorophyll concentration is observed in the western interior shelf region which is under strong influence of Danube. The summer mean chlorophyll concentration in this region is 18 times higher than that in the open parts and about nine times higher than in the eastern shelf region. The greatest seasonal variations are observed in the open part of the Black Sea: chlorophyll concentration in cold season is four to six times higher than in summer and three to five times higher than in April and October. To the contrary, in the western interior shelf regions, the concentration is higher in May–October (about twice than that in November–March). Seasonal variations in the western outer shelf regions are smoothed out as compared with both the western interior shelf and the open regions.  相似文献   

3.
Pigments, size and distribution of Phycoerythrin-containing unicellular cyanobacteria Synechococcus spp. within the euphotic zone were studied for the first time in April–May 1994 in the western and southwestern Black Sea by epifluorescence microscopy and flow-cytometry. Synechococcus was present in varying quantities at every station and depth studied. Surface spatial distribution of Synechococcus revealed that cells were much more abundant in offshore waters than near coastal regions under the direct influence of the Danube river. Minimum and maximum cell concentrations ranged between 9×102 and 1.45×105 cells/ml at the surface, between 2×103 and 1.23×105 cells/ml at the chlorophyll sub-maximum layer, and between 1.3×102 and 3.5×102 at the nitrite maximum layer. Cells at the chlorophyll sub-maximum layer (based on in-situ fluorometer readings) fluoresce brighter and longer than the ones at the surface and lower depths. Spectral properties of chromophore pigment types of total 64 clonal isolates from different depths down to the lower layer of the euphotic zone (60 m) in the southern Black Sea coast revealed that all have type 2 phycoerythrobilin in common, lacking in phycourobilin. In vivo fluorescence emission maxima for the phycoerythrobilin were about the same (578 nm) for all isolates. All isolates examined showed in vivo absorption maxima at between 435 and 442 nm and at about 681 nm due to chlorophyll-a. Based on the flow cytometer mean forward light scatter data for size distribution, it could be concluded that cells at the surface mixed layer (0–10 m) were larger in cell size than the cells at lower depths (20–60 m).  相似文献   

4.
This paper presents results obtained with MIRO&CO-3D, a biogeochemical model dedicated to the study of eutrophication and applied to the Channel and Southern Bight of the North Sea (48.5°N–52.5°N). The model results from coupling of the COHERENS-3D hydrodynamic model and the biogeochemical model MIRO, which was previously calibrated in a multi-box implementation. MIRO&CO-3D is run to simulate the annual cycle of inorganic and organic carbon and nutrients (nitrogen, phosphorus and silica), phytoplankton (diatoms, nanoflagellates and Phaeocystis), bacteria and zooplankton (microzooplankton and copepods) with realistic forcing (meteorological conditions and river loads) for the period 1991–2003. Model validation is first shown by comparing time series of model concentrations of nutrients, chlorophyll a, diatom and Phaeocystis with in situ data from station 330 (51°26.00′N, 2°48.50′E) located in the centre of the Belgian coastal zone. This comparison shows the model's ability to represent the seasonal dynamics of nutrients and phytoplankton in Belgian waters. However the model fails to simulate correctly the dissolved silica cycle, especially during the beginning of spring, due to the late onset (in the model) of the early spring diatom bloom. As a general trend the chlorophyll a spring maximum is underestimated in simulations. A comparison between the seasonal average of surface winter nutrients and spring chlorophyll a concentrations simulated with in situ data for different stations is used to assess the accuracy of the simulated spatial distribution. At a seasonal scale, the spatial distribution of surface winter nutrients is in general well reproduced by the model with nevertheless a small overestimation for a few stations close to the Rhine/Meuse mouth and a tendency to underestimation in the coastal zone from Belgium to France. PO4 was simulated best; silica was simulated with less success. Spring chlorophyll a concentration is in general underestimated by the model. The accuracy of the simulated phytoplankton spatial distribution is further evaluated by comparing simulated surface chlorophyll a with that derived from the satellite sensor MERIS for the year 2003. Reasonable agreement is found between simulated and satellite-derived regions of high chlorophyll a with nevertheless discrepancies close to the boundaries.  相似文献   

5.
Apparent phytoplankton bloom due to island mass effect   总被引:1,自引:0,他引:1  
A continuous monitoring of temperature and chlorophyll-a (Chl-a) concentration from a surface water monitoring system and a towed free fall instrument (MVP) around a small island in the Kuroshio showed low sea surface temperature (SST) and high surface Chl-a concentration (SCC) distribution in the lee of the island that indicates typical “island mass effect” phenomena. When the observed Chl-a profiles (0 to 250 m) were integrated, the total amounts in the lee side data were slightly smaller than those of the upstream side of the island. The difference was statistically significant at the 95% confidence level. The cross section diagram of Chl-a indicated the diffusion of subsurface Chl-a maximum (SCM) from the upstream to the downstream flanks of the island. The diffusivity of SCM and the change of potential energy require the same level of strong turbulent dissipation rate at the flanks of the island. That is consistent with our previous direct measurement in a similar hydrodynamic condition. Therefore, the observed high SCC is due to turbulent diffusion of SCM, and clearly showed that high SCC does not require any new production. Although a high fluorescence field behind an isolated island in a strong flow is often visible from satellite images, the images do not necessarily indicate an enhanced primary production at that moment.  相似文献   

6.
During a repeat grid survey and drogue study carried out in austral summer 1994/95, the abundance and feeding activity of salps were estimated in the Lazarev Sea region from net tows and in situ measurements of gut fluorescence. Throughout the survey area, Salpa thompsoni accounted for >95% of the total salp stock while Ihlea racovitzai was consistently represented in very low abundances. Maximum densities of S. thompsoni, with ≈4000 ind. 1000 m−3, were recorded in the Marginal Ice Zone (MIZ) in December when chlorophyll-a concentrations were well below 1 mg m−3. A dramatic decrease in salp stock was observed at the beginning of January, when S. thompsoni virtually disappeared from the most productive area of the MIZ where chlorophyll-a concentrations had by then reached bloom levels of 1.5–3 mg (Chl-a) m−3. In situ grazing measurements showed that throughout the cruise S. thompsoni exhibited the highest ingestion rates per individual of any of the most abundant components of the grazing pelagic community, with maxima of ≈160 μg (pigm) ind. −1 d−1. These feeding rates are 3 to 5 times higher than those previously obtained using in vitro incubations. The total daily consumption of the population of S. thompsoni varied from 0.3 to 108% of daily primary production. We suggest that competitive removal of food by S. thompsoni, rather than direct predation, is responsible for the low krill abundances generally associated with salp swarms.  相似文献   

7.
Dynamics of suprabenthos and zooplankton were analyzed in two areas located in the NW (off Sóller harbour) and S (off Cabrera Archipelago) of Mallorca (Balearic Islands, western Mediterranean) at depths ranging between 135–780 m. Four stations situated respectively at 150 m (shelf-slope break), and at bathyal depths of 350, 650 and 750 m were sampled at bi-monthly intervals during six cruises performed between August 2003 and June 2004. Suprabenthos showed maximum biomass in both areas from late spring to summer (April to August), while minimum biomass was found in autumn (September–November). Though variable, temporal dynamics of zooplankton showed peaks of biomass in late winter and summer (February and June), while minimals occurred in autumn (August–September) and, at bathyal depths, in April. Suprabenthos (abundance; MDS analyses) showed a sample aggregation as a function of depth (3 groups corresponding to the shelf-slope break, upper slope — over 350 m; and the middle, deeper part of the slope — over 650–750 m), without any separation of hauls by season. By contrast, zooplankton samples were separated by season and not by depth. There was evidence of three seasonal groups corresponding to summer (June 2004–August 2003), autumn–winter (September and November 2003, February 2004), and spring (April 2004), being especially well established off Sóller. In general, suprabenthos was significantly correlated with the sediment variables (e.g. total organic matter content (% OM), potential REDOX), whereas zooplankton was almost exclusively dependent on Chl a at the surface, which suggests two different food sources for suprabenthos and zooplankton. The increase of suprabenthos abundance in April–June was paralleled by a sharp increase (ca. 2.8 times) in the %OM on sediment during the same period, coupled ca. 1–2 months of delay with the peak of surface Chl a recorded in February–March (from satellite imagery data). Suprabenthos biomass was also correlated with salinity close to the bottom, suggesting a link between suprabenthos abundance and changes in the oceanographic condition of water masses close to the bottom. It is suggested that a higher suprabenthos biomass recorded off Sóller in comparison to that off Cabrera in June could, in turn, be related to a seasonal inflow of Levantine Intermediate Water (LIW) in April–June in this area at mid bathyal depths (350–650 m). This trend would be based on: 1) it was evident only at mid-slope depths between 350–750 m, coinciding with the LIW distribution, and 2) it was not recorded among zooplankton (collected throughout the water column). The possible effect of the fluctuations of suprabenthos and zooplankton on higher trophic levels has been explored studying the diet and food consumption rates of the red shrimp Aristeus antennatus, as indicator species by its dominance in bathyal communities. A. antennatus increased its food consumption from February to April–June 2004 off Sóller, which in the case of large (CL > 40 mm) specimens was found in both areas. In addition, there was a shift of diet from winter to spring–early summer. In this last period, A. antennatus preyed upon euphausiids and mesopelagic decapods and fish, while benthos (e.g. polychaetes and bivalves) decreased in the diet. This indicates an increase in the food consumption and probably in the caloric content of the diet in pre-spawning females in April–June 2004, which is synchronized with the period when gonad development begins in A. antennatus females (May–June). Anyway, macrozooplankton, and not suprabenthos, is crucial as a high energetic food source in the coupling between food intake and reproduction in the red shrimp.  相似文献   

8.
The species composition, abundance, and biomass of micro- (>15 μm) and nano- (<15 μm) phytoplankton were studied along the southern Black Sea during June–July 1996 and March–April and September 1998. A total of 150 species were identified, 50% of them being dinoflagellates. The average total phytoplankton abundance changed from 77×103 cells l−1 in spring to 110×103 cells l−1 in autumn and biomass from 250 μg l−1 in summer to 1370 μg l−1 in spring. Based on the extensive sampling grid from June–July 1996, phytoplankton seemed to have a rather homogeneous biomass distribution in the southern Black Sea. In all periods, the coccolithophorid Emiliania huxleyi was the most abundant species, its contribution to the total abundance ranging from 73% in autumn to 43% in spring. However, in terms of biomass, diatoms made up the bulk of phytoplankton in spring (97%, majority being Proboscia alata) and autumn (73%, majority being Pseudosolenia calcar-avis), and dinoflagellates in summer (74%, Gymnodinium sp.). There was a remarkable similarity in the dominant species between the western and eastern regions of the southern Black Sea, indicating transport of phytoplankton within the basin.  相似文献   

9.
A nutrient–phytoplankton–zooplankton–detritus (1D-NPZD) ‘phytoplankton {Phyt} and Pseudocalanus elongatus {Zoop} dynamics in the spring bloom time in the Gda sk Gulf. The 1D-NPZD model consists of three coupled, partial second-order differential equations of the diffusion type for phytoplankton {Phyt}, zooplankton {Zoop}, nutrients {Nutr} and one ordinary first-order differential equation for benthic detritus pool {Detr}, together with initial and boundary conditions. In this model, the {Zoop} is presented by only one species of copepod (P. elongatus) and {Zoop} is composed of six cohorts of copepods with weights (Wi) and numbers (Zi); where . The calculations were made for 90 days (March, April, May) for two stations at Gda sk Gulf with a vertical space step of 0.5m and a time step of 900 s. The flow field and water temperature used as the inputs in the biological model 1D-NPZD were reproduced by the prognostic numerical simulation technique using hydrographic climatological data. The results of the numerical investigations described here were compared with the mean observed values of surface chlorophyll-a and depth integrated P. elongatus biomass for 10 years, 1980–1990. The slight differences between the calculated and mean observed values of surface chlorophyll-a and zooplankton biomass are ca. 10–60 mg C m−3 and ca. 5–23 mg C m−2, respectively, depending on the location of the hydrographic station. The 1D-NPZD model with a high-resolution zooplankton module for P. elongatus can be used to describe the temporal patterns for phytoplankton biomass and P. elongatus in the centre of the Gda sk Gulf.  相似文献   

10.
Microphytobenthos biomass has been measured at several coastal sites on the SE of the main island of the Kerguelen Archipelago (Indian Ocean), during several austral summers (1985–1992), using a conventional fluorometric method. Heterogeneity tests, conducted on two different intertidal sites (Port-Aux-Français, PAF; and Port-Raymond, PRA), showed low standard deviations, whereas the mean concentrations were highly different. Pigment concentrations showed a high variability related to the characteristics of the sediments: from low biomass in coarse intertidal sand, submitted to intense scouring (0.32±0.31 μg Chl a g−1 dw, 0.29±0.14 μg Phaeo g−1 dw) to high biomass in intertidal muddy sand in sheltered areas, particularly along estuaries (54 μg Chl a, 15 μg Phaeo g−1 dw at Korrigan). The subtidal muddy sediments under a Macrocystis pyrifera (Linné) and Durvillaea antarctica (Chamisso in Choris) belt exhibited high concentrations in phaeopigment (Phaeo) (up to 136±83 μg g−1 dw; PRA), while the concentration of chlorophyll a (Chl a) was relatively low. The dense macroalgal canopy supports an important epiphytic diatom biomass (mainly the genera Cocconeis Ehrenberg and Grammatophora Ehrenberg), which is sedimenting after degradation and is in part responsible of the high levels of Phaeo in all sediments. Macroalgal debris were observed, but diatom frustules were dominant in most surficial subtidal sediments. A circatidal mud, in the Morbihan Bay, made of a sponge spicule mat (50 m deep; 4.96 μg Chl a g−1 dw), showed a very low Chl a/Phaeo ratio (0.1), while it reached up to 6 in intertidal sand. Surprisingly, a penguin rookery beach, at the east side of Courbet Peninsula, was characterized by a very low biomass (0.07±0.04 μg Chl a g−1 dw), while it was nutrient enriched, particularly with nitrates.In comparison with the data at the similar latitude, but in temperate regions from the Northern Hemisphere, the microphytobenthos biomass, recorded at Kerguelen's Land, exhibited relatively high pigment concentrations, particularly the Phaeo, and supported a dense and diversified subtidal macrofauna composed of polychaetes (particularly Thelepus extensus Hutchings and Glasby), sea urchins, mytillids and gammarids. The exuberant macroalgal canopy, coastal indentations and low tidal amplitude must be in part responsible of these large benthic primary and secondary biomasses.  相似文献   

11.
At Terra Nova Bay, the scallop Adamussium colbecki (Smith, 1902) characterises the soft and hard bottoms from 20 to 80 m depth, constituting large beds and reaching high values of density (50–60 individuals/m2) and biomass (120 g/m2 DW soft tissues). To assess its role in the organic matter recycling in the coastal ecosystem, its filtering and biodeposition rates were evaluated in laboratory experiments during the austral summer 1993/94. Filtration rates, measured in a flow-through system, were calculated from the difference in particulate organic carbon (POC), nitrogen (PON) and chlorophyll-a (Chl-a) concentration in inflow and outflow water. Experiments were performed using natural sea water with POC, PON and Chl-a concentrations of about 450 μg/l, 90 μg/l and 2 μg/l, respectively. The biodeposition rate and the biochemical composition of the biodeposits were studied in order to detect how the organic matter is transformed through feeding activity of A. colbecki. At +1°C temperature, the average filtering rate was about 1 l h−1 g−1 (DW soft tissues) in specimens ranging in body mass from 2 to 3 g (DW soft tissues) and 6–7 cm long. The biodeposition rate in 3–8 cm long specimens, ranging from 0.4 to 5.7 g (DW soft tissues), was about 5.65 mg DW/g DW/day, leading to an estimate of Corg flux, through biodeposition by A. colbecki, of about 21 mg C m−2 day−1 at in situ conditions. Comparison between the biochemical composition of seston and biodeposits shows a decrease of the labile compounds, of the Chl-a/phaeopigments ratio in the biodeposits. The recorded C/N ratio decrease suggests a microbial colonisation in the biodeposits. This study suggests that Adamussium colbecki plays an important role in coupling the material fluxes from the water column to the sea bed, processing about 14% of total Carbon flux from the water column to the sediments, with an assimilation efficiency of 36%.  相似文献   

12.
Three surveys were carried out in anchovy spawning periods in southern Yellow Sea in May and June 2001, and June 2002. Chlorophyll a (Chl-a) concentration, bacterioplankton abundance, biomass and their variations along the zone of tidal fronts were investigated. The results showed that (1) high Synechococcus abundance distributed more often in frontal area and middle-surface layer of a stratified zone; and (2) the maximal abundance of bacteria occurred in stratified and mixed zone.  相似文献   

13.
Hydrographic surveys in three consecutive seasons in the Irminger Sea in 2001/2002 have revealed six physical regimes (zones) in which different surface mixing and spring re-stratification processes dominate. They are the South Irminger Current, the North Irminger Current, the Central Irminger Sea, the Polar-origin East Greenland Current, the Atlantic-origin East Greenland Current and the Reykjanes Ridge. The variations in restratification processes in particular have significant implications for the timing of shallow spring mixed layer development and therefore the timing and strength of the spring bloom. The relative roles of heat and freshwater in controlling re-stratification are examined for each hydrographic zone, and it is shown that the simplest concept of solar warming generating spring stratification is appropriate for the Irminger Current and the central Irminger Sea. However in the East Greenland Current and the Reykjanes Ridge zones, the springtime arrival of fresh or saline water at the surface dominates re-stratification and generates the earliest and strongest spring blooms of the region. In the cool fresh centre of the Irminger Sea the relatively low chlorophyll-a throughout the year cannot be wholly explained by stratification or nutrient concentrations. Details of the annual cycle in temperature, salinity, chlorophyll-a and nutrients are presented for each hydrographic zone.  相似文献   

14.
Mapping the water constituents from remotely sensed ocean color data enables a better understanding of the dispersal patterns of river-borne substances in the Gaoping (formerly spelled Kaoping) River, Shelf and Canyon (KPRSC) system. Based on twelve MODIS-Aqua images in the KPRSC region taken in 2005, we apply a newly developed GA-SA approach to derive maps of chlorophyll-a concentration (Chl-a), colored dissolved organic matter (CDOM) and non-algal particle/detritus/mineral (NAP). The results demonstrated that the different characteristics of Chl-a, CDOM and NAP make them ideal tracers for observing large-scale dispersal patterns. With ancillary information of averaged daily precipitation, the daily wind field obtained from QuikSCAT (Quick Scatterometer), and the 8-day composite of the temperature field obtained from MODIS-Aqua, we categorized the surface dispersal patterns as coastal, northwestward and frontal patterns. Also, for the first time, we observed a sudden increase of biomass on a large scale from a pair of ocean color images taken over only a 2-day interval. Another remarkable feature is the interaction between the southeastward flow and the intrusion of the Kuroshio Branch, resulting in complicated patterns with various scales of vortex structures and current fronts. The observed features could be used for model validation of the flow field of the KPRSC system.  相似文献   

15.
Seasonal variability and the spatial distribution of sea surface temperatures (SST) and salinities (SSS) are reviewed, in relation to the prevailing climatological conditions, heat fluxes, water budget and general water circulation patterns. Within this context, consideration is given to: sea surface temperatures; air temperatures; precipitation; evaporation; wind speeds and directions; freshwater (mainly riverine) discharges throughout the Aegean; and the exchange of water masses with the Black Sea and eastern Mediterranean Sea. The investigation of satellite images, covering a 6-yr period (1988–1994), has enabled a synthesis of the monthly sea surface thermal distribution to be established.The climate of the Aegean Sea is characterised by annual air temperatures of 16–19.5°C, precipitation of about 500 mm yr−1 and evaporation of some 4 mm d−1. The Aegean has a negative heat budget (approximately −25 W m−2) and positive water balance (+ 1.0 m yr−1), when inflow from the Black Sea is considered. During the summer, the (northerly) Etesians are the dominant winds over the Sea.Mean monthly sea surface temperatures (SST) vary from 8°C in the north during winter, up to 26°C in the south during summer. SST depends mainly upon air temperature; there is a month's delay between the former and latter maxima. The sea surface salinity (SSS) varies also spatially and seasonally, ranging from less than 31 psu, in the north, to more than 39 psu, in the southeast; lower values (< 25 psu) occur adjacent to the river mouths. SSSs present their maximum differences during summer, whilst during winter and autumn the distribution of SSS is more uniform. The overall spatial SST and SSS distribution pattern is controlled by: distribution of the (colder) Black Sea Waters; advection of the (warmer) Levantine Waters, from the southeastern part of the Aegean; upwelling and downwelling; and, to a lesser extent, but locally important, freshwater riverine inflows.  相似文献   

16.
The East Sea/Sea of Japan is a moderately productive sea that supports a wealth of living marine resources. Of the East Sea subregions, the southwest has the highest productivity. Various authors have proposed coastal upwelling, the Tsushima Current, the Changjiang Dilute Water, eddies, or discharge from the Nagdong River as potential sources of additional nutrients. In this paper, we propose, using satellite data from 1998 to 2006, that the biological productivity of the southwestern region is enhanced mainly by wind-driven upwelling along the Korean coast. Firstly, the climatology of seasonal patterns suggests that the enhanced chlorophyll a along the Korean coast is of local origin. Secondly, coastal upwelling is frequent in all seasons except winter. For example, along the coast of the Ulgi region, enhanced chlorophyll a due to coastal upwelling was observed for 25–92% of the time between Jun and Sep in the period 1998–2006. Thirdly, the advection of upwelled water through various pathways to the deeper basin was observed. Fourthly, there appeared to be a strong correlation between the interannual chlorophyll a variations of the coastal upwelling regions and the Ulleung Basin. The chlorophyll a patterns of both regions were closely related to the wind pattern in the upwelling regions, but not to that in the Ulleung Basin. Finally, changes in advection pathways also appeared to affect the productivity of the Ulleung Basin. Since 2004, there has been a shift in the pathways of upwelled water, and consequent increases in chlorophyll a in the Ulleung Basin were observed. This last observation requires further investigation.  相似文献   

17.
Many studies of copepod egg production have shown that food availability and temperature are major factors that influence copepod growth. However, coastal environments are complicated ecosystem and the relationships between growth of copepods and influencing factors are not always clear in nature. We conducted a study along an inner–middle–outer bay transect where variations in environmental parameters would be expected to affect the biomass and egg production rate of A. hongi from February 2001 to December 2001. In this study, we investigated the abundance and biomass with developmental stages and egg production rates of A. hongi in relation to various environmental factors. The copepod A. hongi occurred continuously throughout the year, with a peak abundance in May. In general, the variation in egg production rates showed a similar tendency with the variations in chlorophyll-a throughout the study period. This suggests that phytoplankton biomass is an important factor that affects the egg production of A. hongi. In addition, during the warm season, the egg production of A. hongi was also influenced by the ciliates abundance in the middle and outer bay. Consequently, the egg production of A. hongi is generally affected by food availability in Kyeonggi Bay.  相似文献   

18.
Production of the marine calanoid copepod Acartia omorii was measured from 2 October 1991 to 8 October 1992 at a station in Ilkwang Bay on the southeastern coast of Korea. A. omorii (nauplii + copepodites + adults) were present in the plankton throughout the year, with seasonal variation in abundance. Biomass of A. omorii was averaged at 0.44 mgC m− 3, with peaks in February and July, and relatively low biomass in late summer and fall. Egg production rate ranged from 2.4 to 151.9 μgC m− 3 day− 1, which was equivalent to 95–6075 eggs m− 3 day− 1. Fecundity of an adult female was averaged at 38 eggs female− 1 day− 1. Instantaneous growth rates of copepodites were higher than those of nauplii stages. Annual production of A. omorii ranged from 33.5 mgC m− 3 year− 1 to 221 mgC m− 2 year− 1, showing a seasonal variation of daily production rate with peaks in February and July. The daily production rate of A. omorii was significantly correlated with chlorophyll a concentration. These results suggest that standing stocks and/or productivity of phytoplankton are the major influencing factors, rather than water temperature for the seasonal variation of production of A. omorii in Ilkwang Bay.  相似文献   

19.
The North Aegean Sea constitutes an important region of the Mediterranean Sea since in its eastern part the mesotrophic, low salinity and relatively cold water from the Black Sea (outflowing from the Dardanelles strait) meets the oligotrophic, warm and very saline water of Levantine origin, thus forming a thermohaline front. Mesozooplankton samples were collected at discrete layers according to the hydrology of the upper 100 m, during May 1997 and September 1998. In May highest biomass and abundance values (up to 66.82 mg m− 3 and 14,157 ind m− 3) were detected in the 10–20 m layer (within the halocline) of the stations positioned close to the Dardanelles strait. The front moved slightly southwards in September, characterized by high biomass and abundance values within the halocline layer. The areas moderately or non influenced by Black Sea water revealed lower standing stock values than the frontal area in both cruises and maxima were detected in the uppermost low salinity layer. Samples collected at the stations and/or layers more influenced by Black Sea water were distinguished from those collected at layers and/or stations more affected by Levantine waters in both periods. In May the former samples were characterized by the copepods Acartia clausi, Centropages typicus, Paracalanus parvus. The abundance of the above species decreased gradually with increasing salinity, in the horizontal and/or in the vertical dimension, with a parallel increase of the copepods Oithona plumifera, Oithona copepodites, Oncaea media, Ctenocalanus vanus, Farranula rostrata. During September the frontal area as well as that covered by the modified Black Sea water, were highly dominated by the cladoceran Penilia avirostris and doliolids. For both seasons, MDS plots, issued from the combination of mesozooplankton and water-type data, revealed the gradual differentiation of zooplankton composition from the frontal area towards the area covered by Levantine water, following the spreading and mixing of the Black sea water. The observed temporal and spatial variability in the distribution pattern of mesozooplankton standing stock and species composition seems to depend considerably on the variability of circulation and frontal flows.  相似文献   

20.
The onset of spring bloom in temperate areas is a transition period where the low productive, winter phytoplankton community is transformed into a high productive spring community. Downwelling irradiance, mixing depth and the ability of the phytoplankton community to utilize the light, are key parameters determining the timing of the onset of the spring bloom. Knowing these parameters would thus provide tools for modeling the spring bloom and enhance our knowledge of ecophysiological processes during this period.Our main objective with this study was to provide data for the growth characteristics of some key species forming the spring bloom in the Gulf of Finland, and to apply those results in a simple dynamic model for the onset of the spring bloom, in order to test if the timing of the spring bloom predicted by the models corresponds to field observations. We investigated the photosynthetic characteristics of three diatoms and two dinoflagellates (Chaetoceros wighamii, Melosira arctica, Thalassiosira baltica, Scrippsiella hangoei and Woloszynskia halophila), at low temperatures (4–5 °C). All of these species are common during spring bloom in the Baltic Sea.Cultures of these species were acclimated to different irradiance regimes prior to measurements of photosynthesis, respiration, pigment concentration and light absorption. We did not find a positive relationship between respiration and growth rate, and we hypothesize that this relationship, which is well established at higher temperatures, is negligible or absent at low temperatures (< 10 °C). Photosynthetic maximum (Pm), and maximum light utilization coefficient (α) was lowest and respiration (R) highest in the dinoflagellates.We made a model of the onset of the spring bloom in the western part of Gulf of Finland, using the obtained data together with monitoring data of mixing depth and water transparency from this area. Model results were compared to field observations of chlorophyll-a (Chl-a) concentration. There was a good agreement between the model predictions and the observed onset of the spring bloom for the diatoms. S. hangoei, however, was not able to reach positive production in the model, and W. halophila had the similar growth characteristics as S. hangoei. Consequently, these species must have other competition strategies enabling them to exist and grow during spring bloom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号