首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
水火弯板是船舶曲面外板成型的主要工艺,可靠的成型预测方法是板件成形自动化系统研究的基础。本文研究了水火弯板加工的机理及加工工艺参数确定的算法。在建立并以实验验证了水火弯板的数值模拟模型的基础上,确定了火焰成形的温度场和变形场等主要影响参数,提出了温度场及变形场的描述方案,并通过计算得出了板的温度场及变形场与主要加工参数之间的关系,最后对给定帆形板典型船体结构曲面板的水火成型过程进行了热弹性有限元模拟并确定加工工艺参数算法。  相似文献   

2.
水火弯板热成形方法通过对钢板的加热和冷却来实现板的变形,达到符合要求的曲面形状,是目前国内外主流船体外板加工方式。梯形加热是一种新型的加工方式,本质上属于收边加热,是收边加热工艺当中板边加热面积最大的一种成形方式,成形效果好。基于Ansys有限元仿真软件,在单加热线和"双重"加热线研究的基础上,对梯形加热的温度场和变形场进行研究,得出一系列温度场和变形场的计算结果,为预测梯形加热工艺的变形和将来实现水火弯板自动化加工奠定一定的研究基础。  相似文献   

3.
针对船舶制造过程中曲板成型工艺,分析了不同检测方法的优缺点,提出了基于主动双目激光三维扫描的船体曲面成型检测方法,建立了主动双目视觉测量的应用流程,研制了一套基于主动双目激光三维扫描的船体曲面成型检测原型系统,实现了水火弯板过程中船体曲面的在位检测、偏差计算与显示.  相似文献   

4.
船体外板水火成型工艺参数预报系统设计与实现   总被引:2,自引:1,他引:1  
为解决船体双曲度外板水火加工成型自动化问题,设计了船体外板水火成型工艺参数预报系统,并得以实现.该系统针对船体外板的设计和生产加工需要,设计了船体外板精确展开计算、水火弯板变形规律数学模型、船体外板水火加工焰道布置优化,船体外板加工用见通数据计算、与Tribon系统的集成连接、系统工程数据库等功能模块,根据系统结构设计流程,应用Visual Basic6.0软件开发了船体外板水火成型工艺参数预报系统.  相似文献   

5.
帆形板水火弯板加工的研究   总被引:1,自引:0,他引:1  
研究了帆形板水火弯板加工的机理及加工,工艺参数确定的算法,在建立并以实验验证了水火弯板的数值模拟模型的基础上,确定了帆形板火焰成形的温度场及变形场主要影响参数,提出温度场及变形场的描述方法,并通过计算得出了板的温度场及变形场与主要加工参数间的关系,最后得到了对于给定帆形板确定加工工艺参数算法。  相似文献   

6.
船艏和艉部区域的船舶外板通常呈现单曲面或者双曲面形,其加工及安装精度是船体建造控制中的重点。冷加工结合火工的船舶外板加工工艺,可有效加工双曲外板,并提高其线型精度,解决船舶线型外板的加工难题。在船厂生产实践过程中,采用冷加工和火工配合的方法,解决船体曲面外板加工仍然是不可替代的工艺方法。  相似文献   

7.
文章在“单”线加热的机理研究基础上,重点对“双重”线加热进行有限元分析,对其温度场和变形场进行了大量基于ANSYS的数值计算,并与“单”线加热进行了比较。仿真结果说明“双重”线加热能有效提高船体外板的成形效率,非常适合加工大变形的船体外板。  相似文献   

8.
饶文治  袁萍  王明磊 《船舶工程》2015,37(S1):182-185
船体曲板构件的成形检验大多采用效率较低,材耗大,手工测量为主的样板/样箱进行实体靠模检测。文章提出了一种基于GPS技术和光电原理综合运用的船体曲板成形加工的无模检验方法,该方法通过特定装置对加工成形后的船体曲板上纵、横向检测点进行空间定位和测量,并采用Matlab编程实现测量数据的自动化分析与处理, 既可用于船舶三维数控弯板机的加工检测,也可用于其他方法加工船体曲板的加工检测。  相似文献   

9.
鞍形板水火加工工艺参数预报方法研究   总被引:3,自引:0,他引:3  
利用氧乙炔焰或其他热源的水火弯板工艺,广泛应用于船体外壳的建造.本文应用鞍形板水火加工工艺参数的数学模型,结合曲板成型所需局部收缩量的理论计算结果,进行了鞍形板水火加工工艺参数预报方法的研究,并在此基础上建立了预报系统.该预报系统能够给出鞍形板加工焰道的合理布置方案和加工工艺参数.通过算例证明该系统具有工程使用价值.  相似文献   

10.
船体分段钢结构焊接过程仿真   总被引:3,自引:0,他引:3  
通过有限元与神经网络相结合的方法,模拟了船体上层建筑、舷侧分段钢结构典型部位的焊接过程,并对其温度场、位移场进行了仿真,分析了组焊工序、焊接工艺参数对上述分段钢结构焊接变形的影响。研究结果表明,采用有限元与人工神经网络相结合方法,可以快速分析、预测船舶钢结构的焊接变形,且仿真结果与实焊数值能较好吻合。并分析出影响船体分段钢结构焊接变形的主要因素是钢板拼焊后产生的残余应力,增加消除焊接应力工序,可以明显降低船体分段钢结构焊后产生的变形量。  相似文献   

11.
船体外形是有双向曲度的不规则整体,其外板骨架是由加工成型的外板板和型材组成。如果型材加工不到位,势必引起外板容易变形。对于一般曲度比较小、形状不复杂的型材,通过骨材冷弯都能很好成型,但是对于形状比较复杂、带有开孔和扭曲的型材,加工的时候很容易出现偏差。通过对现场施工过程中出现的问题进行分析研究,采取各种工艺措施加以控制,达到减少误差的成型效果。  相似文献   

12.
船舶制造中最重要的加工方法就是焊接,焊接质量的高低直接影响到船体,而焊接变形是焊接过程中常出现且难以控制的问题。文章对大型船体焊接变形仿真技术中的固有应变预测技术和热弹塑性有限元技术以及应用进行了研究。  相似文献   

13.
矩形板是船舶结构的最基本组成元素,船舶结构遭受矩形质量撞击的工况时有发生,因此应对船体板结构的抗撞性能给予足够重视。本文以船体矩形板为研究对象,采用动态冲击实验技术和刚塑性理论相结合的方法,分析了船体板在受到矩形质量块撞击作用时的变形损伤机理;研究中采用试验方法得到船体板的变形模态,在此基础上运用刚塑性理论分别导出了船体板的变形和碰撞力的理论公式,并用实验结果验证其准确性;最后采用理论方法对船体板的边界条件和载荷集中系数等相关参数进行分析。通过与实验结果的对比发现,本文给出的刚塑性理论公式能够较为准确地预测船体板变形和冲击力。  相似文献   

14.
在对船体结构火工矫正工艺的温度场进行数值分析的基础上,进而对火工矫正工艺的热弹塑性进行了分析,并对板厚及加热速度对残余应力及变形的影响做了研讨.  相似文献   

15.
船体曲面外板加工成形是船舶建造精度控制的重要环节,传统曲面外板加工精度检测主要依靠样板和样箱,实现曲板成形自动化检测的关键是快速、精准地重建曲板三维曲面。提出一种基于深度学习的曲板摄影测量方法,该方法通过PatchmatchNet推断深度图得到曲板稠密点云,对稠密点云拟合二次曲面,基于拟合曲面去除曲板表面法线方向上的噪点,并基于主成分分析法(PCA)和最近点迭代法(ICP)对稠密点云和设计曲面进行自动配准,通过实例分析三维重建方法、图像数量、图像拍摄范围等对重建点云精度的影响。结果表明:曲板多视角三维重建精度小于2mm,满足船体外板加工精度要求,可为实现船体曲板精度自动化测量提供了参考与借鉴。  相似文献   

16.
针对某船船体外板的特点,通过水火弯板外板加工、特殊胎具热压加工、机器设备冷弯加工等不同外板加工方法的实际应用,对该船船体EH36高强钢曲面外板的加工成型进行工艺实践,为同类型船或相似船曲面外板的加工成型与技术交流提供参考。  相似文献   

17.
总结温度载荷对船用材料性能、船体结构温度场和热应力场的影响,以及温度载荷作用下船体结构安全性评估方法,对当前船体结构温度场及热应力场的研究现状进行综述,重点梳理沥青船和液化气船等2种持续承受温度载荷的船舶以及舱室火灾和极地航行等2种极端温度场景的结构温度和热应力场研究现状,对今后可深入研究的方向进行展望,为进一步保障船体结构安全提供参考。  相似文献   

18.
为获取较为精确的船体三维曲板放样展开曲面,在船厂测地线法展开船体外板的工艺操作方法基础上,提出一种船体三维曲板展开方法,采用NURBS曲面插值拟合待展曲面并划分四边形网格单元,应用改进的迪杰斯特拉算法求解展开基准线,保证单元等长,对船体曲板进行展开。充分考虑钢板套料和曲板加工等后续工艺环节的实际需求,计算展开曲面的面积误差和平均应变能系数,通过与测地线法展开结果进行对比,验证单元等长展开法可靠。  相似文献   

19.
周宏  蒋志勇  李敢 《船舶工程》2011,33(1):57-60,64
采用ANSYS软件对低碳钢平板的高频感应线状加热弯板成形过程进行热弹塑性有限元分析,利用相关数值结果定性分析加热功率、热源移动速度成形热过程中板材温度场及最终面内收缩变形和角变形的影响,为船板成形自动化加工提供数据支持.  相似文献   

20.
采用高频感应加热装置进行热弯成形试验,得到典型的单曲率板。通过高效的热-弹-塑性有限元计算,再现板材热弯成形的温度场特征和力学响应。同时,研究感应加热过程中的工艺参数对板材弯曲变形的影响,提出线性逼近迭代二分法和迭代0.618法,确定板材实际加热中的加热线位置和感应加热速度,并对其进行有限元分析。研究结果表明:采用规划的工艺参数进行热-弹-塑性有限元分析,得到的面外弯曲变形和面内收缩均与目标曲率板相吻合;线性逼近迭代二分法和迭代0.618法应用在感应加热单曲率热弯成形中具有良好的可行性和准确性,可供曲板热弯工艺的规划参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号