首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 641 毫秒
1.
The present work is motivated by the increasing need for cost-efficient solutions in offshore structural systems for wind energy production and for improvement of their structural performance. The structural behavior and design of high-strength steel welded tubular connections (yield strength higher than 700 MPa) subjected to monotonic and strong cyclic loading is investigated. In the first part of the paper, an experimental investigation is presented on high-strength steel tubular X-joints subjected to monotonic and cyclic loading far beyond the elastic limit of the material, leading to weld fracture. Two grades of weld metal material are employed in the welding process of the specimens. The experimental results indicate that the weld material grade has a significant influence on the deformation capacity of the welded connection under monotonic loading conditions, and its low-cycle fatigue life. The experimental procedure is simulated using advanced finite element models, elucidating several features of joint behavior and complementing the experimental results. Overall, a good agreement is found between numerical simulations and experimental results, in terms of both global response and local strains at the vicinity of the welds. Furthermore, the structural performance of the welded tubular joints under consideration is assessed using available design methodologies in terms of both ultimate strength and low-cycle fatigue resistance, in an attempt to validate an efficient design methodology for low-cycle fatigue. The results from this research effort are aimed at developing the necessary background for the possible use of high-strength steel in tubular steel lattice structures, particularly in offshore platforms for renewable energy production. They can also be used as a basis for the possible amendment of relevant design specifications and recommendations for including special provisions for high-strength steel structural systems.  相似文献   

2.
Grouted connections (GCs) are widely used to connect superstructures and driven piles in offshore wind turbine structures. They resist fatigue loading in marine splash zones and even submerged environments. In this paper, six GC segment specimens were designed and tested under fatigue loading in both the air and water ingression conditions. The results in the air condition showed that for the specimens with lower loading ranges, the strain distributions and residual displacements stabilized after 20 thousand load cycles. These conditions persisted until the end of the test with two million cycles, with only a few tiny cracks appearing on the grout material surface. Meanwhile, wide cracks and grout material exfoliation were found in specimens with higher loading ranges. The residual displacement accumulated gradually, which eventually caused the termination of the test when it reached 5 mm after 1.3 million cycles. The results in the water ingression condition showed that the water had entered into the micro-cracks of the grout material, which severely degraded the fatigue behavior of the GC specimens. Even in lower loading ranges, specimens W-1 and W-2 only endured 0.264 million and 64 thousand load cycles before the displacement of the top clamp reached −10 mm. Compared with two specimens tested in the air, with a total displacement of less than −0.7 mm after two million load cycles, the severe deteriorating effect of water ingression on the fatigue behavior of GCs was apparent.  相似文献   

3.
马蓉  姚天宝 《水运工程》2020,(6):166-171
在码头和深海工程中常采用剪力键连接钢管桩与上部结构,以提高钢管桩的承载力及结构整体性。剪力键的间距是影响钢管桩桩头受力性能的重要影响因素。以桩头带两个剪力键的钢管桩为研究对象,建立8组有限元模型,利用Gebman试验报告中的试验值与数模值进行对比。结果表明:1)试验值与数模值误差较小,且变化趋势一致。2)钢管桩承载力和钢管桩桩头复合刚度随着剪力键间距的增大先增加后减小,剪力键间距介于1. 0D~1. 2D时,钢管桩整体受力性能最好。3)剪力键的最优设计间距始终在1. 0D附近,随着桩径的增加,剪力键的最优设计间距可适当减小。其研究成果为实际工程中钢管桩桩头剪力键的设计提供了重要的参考。  相似文献   

4.
钢管桩与上部结构剪力键连接的设计方法,国内外相关规范尚无明确的规定,也没有完整的计算理论。基于现有研究,探讨钢管桩与上部结构剪力键连接的破坏模式,分析破坏机理;阐述钢管桩与上部结构剪力键连接的设计理论、设计方法,为完善剪力键连接的设计方法提供依据。  相似文献   

5.
由于高强度钢的使用,船舶结构许用应力水平的提高,船舶结构的疲劳强度越来越受到关注。船舶结构的疲劳寿命取决于其焊接结构的疲劳寿命。因此,了解焊缝几何参数对焊件疲劳强度的影响以及采用经济实用的方法改善船舶结构的疲劳性能是十分重要的。本文首先对焊缝几何参数对焊件疲劳寿命的影响进行了分析,在此基础上用ABS钢和945钢两种钢板做试件,分别进行了简单拉伸实验及打磨和未打磨条件下对接接头的疲劳试验。试验结果表明焊件的疲劳寿命可以通过打磨焊缝得到改善;尤其对于高强度钢焊件。试验还说明手工打磨焊缝和机械磨削焊缝对焊件疲劳强度的改善效果差别很大,疲劳寿命的分散性也很大。因此,应当对改善焊件疲劳寿命的工艺进行更详细的研究。  相似文献   

6.
New offshore oil and gas exploration has placed renewed emphasis on developing structures in relatively complex geological conditions. Due to the damaging nature of impact driving, traditional steel piles used to support jacket structures, are not ideally suited to specific soil types, such as carbonate sands. Drilled and grouted piles are commonly used to support structures in these soil conditions. This paper describes a novel drilled pile, which has been developed specifically to provide a cost effective installation process while maintaining the benefits of grouted piles. The installation process negates the need for temporary casing in weak soils and minimizes the number of offshore operations. In this paper, the installation methodology and post-installation performance of a large scale onshore field trial is described. The installation process was successfully demonstrated with a 1.9 m diameter test pile installed in fine sand to 17.7 m depth in under 3 h. The performance of the pile, as measured in a tension static load test, was shown to compare favorably with existing pile design methods.  相似文献   

7.
Grouted connections are intensively used in offshore rigs, platforms as well as jacket and monopile offshore wind turbine structures. Being located in remote offshore conditions, these connections can experience considerable adverse loading during their lifetimes. Degradation was reported inside similar connections, which were installed in the last three decades. Grouting in the offshore sites may often be proven difficult, which eventually leads to reduced load-bearing capacity of connections in the long run. Thus, repair and rehabilitation of such connections should be planned ahead to minimize operational delays and costs. In this study, scaled grouted connections were manufactured using a novel mould, whose integrity were monitored using digital image correlation (DIC). The connections were loaded under static load to visualize the main failure pattern using distributed fibre optic sensors and acoustic emission (AE) analysis. Grouted connections were then repaired using a cementitious injectable grout. The effectiveness of the grout injection was monitored using dye penetration technique. Finally, specimens are reloaded to identify the potential of such repair for grouted connections.  相似文献   

8.
覃廖开 《船舶工程》2019,41(7):133-138
与船型FPSO相比,圆筒型FPSO没有明显的总纵弯曲,上部模块与船体结构之间通常采用刚性支墩来连接,水平运动所产生的弯矩和装/卸载引起的船体垂向变形对模块支撑结构的影响较为显著。因此,以“希望6号”圆筒型FPSO上部模块支撑结构为研究对象,基于DNVGL船级社规范,介绍一种简化疲劳分析方法。以FPSO运动加速度和船体变形载荷作为载荷输入条件,利用SESAM/GeniE软件进行有限元分析,得到结构在所有组合工况下应力的扫描计算结果。根据作业海域各个方向波浪发生的概率,运用简化疲劳分析方法计算得到所关注节点的疲劳损伤和各个工况对结构节点疲劳损伤度的贡献。结果表明,所关注节点的疲劳强度均满足设计疲劳强度要求;同一节点的疲劳损伤对不同浪向的敏感度不一样。该简化疲劳分析方法同样适用于承受周期性载荷的FPSO上部模块主结构和其他型式海洋结构物的疲劳分析。  相似文献   

9.
10.
韩超帅  马永亮  曲先强  张猛 《船舶力学》2017,21(12):1527-1539
文章提出一种基于等效疲劳载荷的快速有效的结构优化设计方法,首先通过bladed模拟得到时域下的风载荷,然后通过雨流计数法则和等效损伤理论得到相应的疲劳载荷谱和等效疲劳载荷,接着以导管架式海上风机为例,利用AN-SYS对其进行三维建模,选取三种典型管节点和两种非管节点,基于热点应力法计算了其在三种风疲劳载荷作用下的疲劳损伤,通过比较三种载荷作用下的疲劳损伤结果,验证了等效疲劳载荷的可靠性.接着又计算了各等效疲劳载荷分量单独作用下的海上风机焊接节点的疲劳损伤,得出各疲劳载荷分量对疲劳总损伤的贡献,可以为设计者提供更好的载荷设计依据.相比于传统的时域疲劳分析方法和疲劳载荷谱方法,等效疲劳载荷方法更加方便有效.  相似文献   

11.
变幅载荷作用下焊接接头疲劳寿命预测方法   总被引:8,自引:4,他引:4  
船舶与海洋结构物在其服役过程中受到波浪等载荷的交变作用而引起结构的疲劳损伤.检测结果表明船舶及海洋结构的疲劳热点部位大多数是在构件相互连接的焊缝焊趾处.因此,研究典型接头表面裂纹应力强度因子统一计算方法以及变幅载荷作用下表面裂纹扩展规律对船舶与海洋结构物的寿命预测是十分重要的.本文讨论了裂纹闭合及开口比的计算,在Newman有效应力强度因子计算方法的基础上,提出了考虑因素更全面的有效应力强度因子幅计算式以及变幅载荷作用下船舶与海洋结构物典型焊接接头疲劳裂纹扩展寿命预测模型.  相似文献   

12.
张洁  郭云川 《水运工程》2017,(10):202-205
大管桩由于具有较高的极限、抗裂弯矩值,在基础工程中得到广泛应用。在近海工程中,由于桩基受到长期波浪、水流或靠船撞击等水平动力荷载,因此必须考虑大管桩的疲劳性能。通过循环荷载下的抗弯试验对D1200B32-2型大管桩进行抗裂性能研究,得到了试验样本的疲劳损伤变化并利用lgS-lgN曲线预测疲劳极限弯矩值,为大管桩的疲劳强度设计提供一定的参考。  相似文献   

13.
Fatigue damage is one of the governing factors for the design of offshore wind turbines. However, the full fatigue assessment is a time-consuming task. During the design process, the site-specific environmental parameters are usually condensed by a lumping process to reduce the computational effort. Preservation of fatigue damage during lumping requires an accurate consideration of the met-ocean climate and the dynamic response of the structure. Two lumping methods (time-domain and frequency-domain) have been evaluated for a monopile-based 10 MW offshore wind turbine, both based on damage-equivalent contour lines. Fatigue damage from lumped load cases was compared to full long-term fatigue assessment. The lumping methods had an accuracy of 94–98% for the total long-term fatigue damage and 90% for individual wind speed classes, for aligned wind and waves. Fatigue damage was preserved with the same accuracy levels for the whole support structure. A significant reduction of computational time (93%) was achieved compared to a full long-term fatigue assessment. For the cases with 30° and 60° wind-wave misalignment, there was a mean underestimation of approximately 10%. Variations in penetration depth did not affect the selection of the lumped sea-state parameters. This work presents a straightforward method for the selection of damage-equivalent lumped load cases, which can adequately preserve long-term fatigue damage throughout the support structure, providing considerable reduction of computational effort.  相似文献   

14.
《Marine Structures》2002,15(2):157-173
Welded tubular connections exhibit significant stress concentrations at the weld vicinity, which may result in fatigue failure. Stress concentration factors (SCFs) in DT-joint are computed, based on an extensive finite element study. The present paper develops a methodology for the calculation of the maximum local stress, referred to as “hot-spot stress”, in a multi-planar DT-joint, with particular emphasis on the effects of bending moments on the braces and the chord. Special attention is focussed on the location where critical stress concentration occurs, as well as on the so-called “carry-over phenomenon” and its implications on the hot-spot stress value. Simplified design equations for fatigue design are proposed to determine SCF values due to bending in order to improve predictions with respect to existing design tools.  相似文献   

15.
齐赵敏  李怡  段磊  张一博  王召兵 《港工技术》2012,49(4):23-26,37
大型海洋工程结构多常用钢管桩,在钢管桩的制作和安装过程中通常会产生环向对接焊缝,由管节偏位引起的环向焊缝应力集中现象是焊缝疲劳热点应力评估和焊缝疲劳安全分析的重要影响因素.通过实用近似分析方法,研究在轴向拉力和平面内弯矩单独作用下等壁厚对接焊缝应力集中间题,得出等壁厚拉弯构件对接焊缝应力集中系数的近似计算公式;根据对钢...  相似文献   

16.
In support of the development of improved fillet weld sizing criteria for lightweight shipboard structures, a comprehensive static strength test program using longitudinal and transverse shear specimens according to AWS B4.0 Standards has been conducted. This test program covers base material with strength ranging from 71 ksi (490 MPa) to 96 ksi (660 MPa) and weld size ranging from 1/8″ (3 mm) to 3/8″ (10 mm). This paper focuses on a traction stress based analysis of the test data as an effort to establish a unified shear strength definition for load-carrying fillet weld specimens regardless of shear loading conditions. The proposed shear strength definition proves to be effective in correlating the fillet weld strength test data of the longitudinal and transverse shear specimens. The results of this investigation demonstrate that existing shear strength definitions used by various weld sizing criteria such as those given by Class Societies have two major limitations: (1) it cannot be related to a critical stress state on experimentally observed failure plane in transverse shear specimens; (2) it underestimates shear stress at failure due to severe stress concentration at weld end in typical longitudinal shear specimens. These two limitations have been shown to be the major cause for having two significantly different shear strength values: one is transverse shear strength obtained from transverse shear specimens and the other is longitudinal shear strength obtained from longitudinal shear specimens.  相似文献   

17.
Stress concentration and residual stress have a significant influence on fatigue life of welded joints. In order to reduce the stress concentration of welded joints, a mathematical design method of tensile triangles (MTT) based on bionics was applied to weld shape design. Accordingly, the stress concentration of various weld beads in the corner boxing welded joint and the fillet welded T-joint was dissected using our in-house FEM software JWRIAN. It was found that there existed a large stress concentration in the conventional welded joints, whereas those welded joints with elongated weld bead were accompanied by a lower stress concentration, especially for elongated weld bead with MTT design. Furthermore, among the weld shapes of the corner boxing fillet welded joint, the rectangle shape of weld bead had the minimum stress concentration factor (1.05). For the fillet welded T-joint with MTT design, the stress concentration of weld toe decreased dramatically with the increase of the index of designed shape, but there was a minor difference of stress concentration at weld root between the weld beads with MTT design. In addition, application of low transformation temperature (LTT) weld metal utilizing martensitic transformation to the fillet welded T-joints can produce compressive residual stress at weld toe.  相似文献   

18.
以“南海胜利”FPSO原作业区的第三次延寿项目为研究对象,对纵骨与横舱壁、横向强框的连接节点,舱内桁材大肘板趾端节点,模块支墩与主甲板连接处的肘板趾端节点,以及与内转塔装置连接处的结构节点,分别采用了简化疲劳方法、热点应力法及谱疲劳分析法,对不同部位节点进行疲劳评估,并针对疲劳高危节点,通过合理的结构形式改造,进行结构的疲劳寿命改善设计。本文旨在探索疲劳评估方法与寿命改善设计在FPSO延寿改造中的应用。  相似文献   

19.
《Marine Structures》2005,18(1):25-42
Full-scale fatigue testing of five test specimens of side longitudinals of a ship/FPSO was carried out at the structural laboratories of DNV in Oslo. The main results from these tests are presented in this paper. The specimens have also been modelled by finite elements and some of the results from the most complex connections have been compared with measured data. The fatigue test results are compared with a hot spot S–N curve that is recommended for design of plated structures that are subjected to dynamic loading.  相似文献   

20.
风暴模型是Tomita等提出的用来评估船舶结构疲劳强度的一种随机波浪载荷简化模型,它能表达波浪载荷是与时间相关的随机过程。文中介绍了风暴模型及波浪诱导应力短期分布的基本特征。将风暴模型和裂纹扩展率单一曲线模型及焊趾表面裂纹应力强度因子的计算方法结合起来,探讨了复杂载荷作用下船舶结构疲劳裂纹扩展预报方法。并用权函数法计算了给定残余应力分布的表面裂纹应力强度因子。预报了对接焊接接头焊趾处表面裂纹在风暴波浪载荷作用下的疲劳裂纹扩展行为,结果表明风暴的大小、顺序,初始裂纹尺寸及残余应力对裂纹扩展行为影响明显。合理的风暴模型参数及初始裂纹尺寸的确定对船舶结构的疲劳寿命预报是非常重要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号