首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
现有航向控制主要使用PID控制器,其主要应用于线性控制问题,而航向控制具备一定的随机性,导致常规航向控制方法稳定性较差,威胁舰船航行安全性,引入人工智能技术提出舰船航向混合自动控制方法研究。设置假设条件构建舰船运动模型,以此为基础,对运动参量进行无因次化处理,避免量纲不同对模型产生不利影响,引入人工智能技术——神经网络算法与PID控制理论进行混合应用,制定神经网络PID控制程序,执行程序即可实现舰船航向的混合自动控制。实验数据显示:在常数大于2条件下,应用人工智能技术后获得的航向控制稳定性指标大于平均水平,说明人工智能技术应用性能较好。  相似文献   

2.
传航行轨迹精准控制算法在多船并行情况下,由于计算中没有区分航线航向,造成航行精准度较低,为此提出多船并行航行轨迹精准控制算法。构建船舶轨迹精准控制模型,根据船舶航行目的生成船舶运行轨迹,以实际航行轨迹为基础计算船舶定位航线,分别计算船舶直线航行控制轨迹以及曲线航行控制轨迹,完成多船并行航行轨迹精准控制算法设计。设计仿真实验,通过模拟使用环境,将提出算法与传统算法进行比较,实验结果表明提出方法计算的航行精准度更高,证明研究方法具备有效性。  相似文献   

3.
针对传统混合型舰船控制系统存在的控制操作复杂,且控制参数精准度不足,导致舰船出现航行姿态异常的问题,提出气动PLC控制系统对混合型舰船姿态控制研究。以PLC控制技术为基础,首先通过创建气动PCL数据控制硬件,对舰船的航行姿态相关数据进行精准化采集,并对不同数据对舰船姿态的影响进行分析;其次,通过分析结论找出影响舰船姿态的差量参数。引入控制差量平衡算法,对硬件采集的控制参数进行差量平衡计算,得到舰船不同状态下的最佳姿态平衡控制量。最后,通过仿真实验对提出研究设计的系统进行对比测试,证明其能够稳定高效地解决传统控制系统,在混合型舰船姿态控制上,出现准确度不足的问题。  相似文献   

4.
传统水下航行器轨迹规划计算处理过程中,受到自身算法逻辑参数影响,建模数据计算涵盖不够严谨,无法对小概率误差轨迹进行引入分析,从而导致航行器预判轨迹出现偏离。针对问题产生原因,提出基于大数据分析的水下航行器运行轨迹规划模型研究。首先,对传统模型计算算法进行修正,引入MFT样条差值规划算法对构建模型轨迹数据进行优选规划计算;接着引入迭代多项轨迹构造算法,对规划模型数据进行轨迹模型构建计算;最后,通过对构建模型进行仿真数据测试。通过与传统模型的对比证明提出构建的轨迹模型能够解决传统模型存在的问题与不足。  相似文献   

5.
传统舰船电网故障诊断算法存在故障点与电路层数据不同步的问题,导致故障点出现时间量与确定故障位置时间量出现误差,进而影响电网保护策略的启动响应速度,造成不必要的连锁故障。因此,采用人工智能算法,对故障诊断模型进行优化,并提出人工智能优化算法的舰船电网故障诊断优化研究。首先在现有舰船电网故障诊断模型输出端,加入故障数据拟合模型计算,对电网络故障数据与电网结构层进行拟合;然后通过人工智能算法,对拟合故障数据的识别响应阈值进行优化计算,从而提升诊断阈值灵敏度,达到最佳的故障诊断效果。最后,通过与传统诊断算法诊断效果数据的对比,证明提出优化方法的可行性。  相似文献   

6.
轨迹规划是保证舰船安全航行的关键技术,针对当前舰船轨迹规划算法存在规划精度低、速度慢等不足,为了获得更优的舰船轨迹规划方案,设计了基于人工智能技术的舰船轨迹规划算法。首先分析了当前舰船轨迹规划的研究现状,并构建了舰船轨迹规划的数学模型,然后采用人工智能技术对舰船轨迹规划的数学模型进行求解,搜索到最优的舰船轨迹规划方案,最后采用具体仿真模拟实验验证舰船轨迹规划算法的性能。结果表明,人工智能技术的舰船轨迹规划精度高,舰船轨迹规划速度快,获得了比其他算法更优的舰船轨迹规划方案,可以应用于实际舰船安全航行管理中。  相似文献   

7.
现有方法由于运算时间过长,存在着误差补偿实时性差、误差补偿精度低的缺陷,为此提出单片机的舰船航行控制误差实时补偿研究。在舰船导航系统中获取舰船航行控制数据,以此为基础,计算舰船的航行控制误差,依据航行控制误差计算结果,选取单片机型号,通过原始误差数据输入阶段、预处理阶段与补偿阶段确定刻度因子补偿公式,执行刻度因子补偿规则获取补偿后航行控制数据,实现了舰船航行控制误差的实时补偿。测试结果表明:与现有方法平均数值相比较,提出方法的误差补偿时间下降了5.21 ms,误差补偿精度上升了14.12%,证明提出方法具备更好性能。  相似文献   

8.
嵌入式船舶导航系统航行轨迹智能控制方法   总被引:3,自引:3,他引:0  
传统船舶航行轨迹智能控制方法存在控制精准度低的缺点,为此提出嵌入式船舶导航系统航行轨迹智能控制方法。采用双坐标系对船舶航行轨迹模型进行建立,以建立的船舶航行轨迹模型为依据,利用传感器对船舶航行轨迹数据进行采集与处理,通过采集的数据计算船舶航行轨迹偏差,采用船舶航行轨迹控制算法对航行轨迹偏差进行调整,实现了嵌入式船舶导航系统航行轨迹的控制。通过实验可得,提出的嵌入式导航系统航行轨迹智能控制方法控制精准度比传统方法高28%,说明提出的嵌入式导航系统航行轨迹智能控制方法具备极高的有效性。  相似文献   

9.
为加强船行主机对于行进轨迹的精准控制能力,实现对船舶航向的有效性规划,提出基于人工智能技术的船舶航行轨迹控制算法。联合TLC设计思想,计算伪逆系数的具体数值结果,完成基于人工智能技术的船舶航迹节点安排。在此基础上,研究微分代数谱理论,通过航向控制器的促进作用的,求解非线性控制参量条件,完成人工智能技术船舶航行轨迹控制算法的设计。对比实验结果表明,与线性化控制手段相比,新型轨迹控制算法的TDR系数值能够达到87%,能够在有效规划船舶航行方向的同时,实现船行主机对于行进轨迹精准控制能力的提升。  相似文献   

10.
为了减少舰船航向混合自动控制偏差,设计一个人工智能算法的舰船航向混合自动控制方法。首先提出舰船航向混合自动控制结构,然后确定寻优参数和控制规则,并对航迹偏差计算,最后采用遗传算法实现最后的舰船航向混合自动控制。实验结果表明。此次研究的人工智能算法的舰船航向混合自动控制方法有效减少了控制偏差,并减少了控制时间,实际应用效果较好。  相似文献   

11.
随着我国船舶航运事业的兴起,对保持舰船航行的安全和稳定的要求越来越高。由于船舶航运事业面对的环境复杂多变,传统PID船舶稳定性能分析和控制方法难以对大型风浪引起的船舶摇晃运动系数进行有效分析,无法快速准确的对船舶随机横摇运动外扰力进行计算,不利于船舶航行安全。因此结合混合粒子群算法对船舶稳定性进行研究。首先对船舶航行过程中外扰动因素影响程度进行分析和计算,并设计了船舶稳定性检测和控制系统,从而达到提高船舶航行稳定性的设计目标。为验证该方法的有效性,对比传统PID船舶稳定性检测控制方法进行了仿真实验。实验结果表明,基于混合粒子群算法的船舶稳定性分析方法能够更好地对船舶航行安全、稳定性能和航行状态进行精准判断,保障船舶在复杂海洋环境中的稳定航行。  相似文献   

12.
传统船舶控制系统的的控制逻辑存在隶属关系量模糊问题,出现船舶无法自动控制指令动作滞后的现象。因此,提出模糊数学理论的舰船自动控制系统设计。针对问题产生根源在于隶属量的模糊计算逻辑,对现有的控制系统的硬件参数进行调整,通过对硬件的调整实现对将要引入算法的支持。引入PID自动控制算法,对船舶的控制量进行重组计算。然后,通过引入的模糊算法对计算的控制量进行隶属量的模糊逻辑计算,完成对传新的船舶自动控制系统的设计。最后,通过对比实验的方式,将模拟数据导入设计的系统并记录结果。结果表明,提出设计的系统具有集成度高、控制能力强、控制计算准确率高的优点。  相似文献   

13.
现有舰船航行轨迹预判方法存在轨迹预判模式不完善的问题,导致航行轨迹点覆盖程度较低,设计一种基于大数据分析的舰船航行轨迹预判方法。获取舰船航行数据,定义并插补舰船航行基准数据,利用密度聚类算法挖掘航迹图谱,计算航线轨迹点距离,设定航行异常阈值,基于大数据分析设置轨迹预判模式,实现轨迹预判方法设计。实验结果表明,此次设计的轨迹预判方法,其航行轨迹点覆盖程度均值比其他2种现有轨迹预判方法分别高13.621%,12.138%,证明融合了大数据分析的轨迹预判方法更加有效。  相似文献   

14.
由于当前船舶航行环境日益复杂易造成船舶航迹偏离等问题,一旦船舶偏离航行易造成严重的安全问题,因此对船舶航迹进行精准控制的要求也越来越困高。由于传统方法缺失自动校正航线等功能,对船舶航迹进行控制仍存在延时、误差等问题,不利于船舶进行准确航行。为了实现船舶航迹自动控制的功能,结合PID神经网络算法对船舶航迹控系统进行优化,基于模糊算法对船舶航行参数进行控制和调整,以便提高船舶沿航线进行准确航行,同时在船舶偏离航线时及时进行检测和校正保持船舶沿标准航迹航行。为检验该方法的有效性,进行了仿真实验,实验结果证明基于PID算法的传播航迹自动控制方法有利于准确保障航迹,自动对船舶航行数据进行分析和矫正,保持船舶控制系统的良好性能。对我国航海战舰控制航迹有一定的指导意义。  相似文献   

15.
针对传统舰船运行轨迹异常点识别方法存在运行轨迹检测性能较差的问题,提出一种基于物联网技术的舰船运行轨迹异常点识别方法,获取舰船自动识别系统中的舰船运行轨迹数据,在舰船自动识别系统中,舰船运行轨迹数据的存放形式是日志文件,因此对系统中的日志文件进行挖掘,基于物联网技术对挖掘数据实施预处理,通过StopT-CB算法划分舰船运行轨迹以剔除停留点,便于进行异常点的识别,通过网格划分实现舰船运行轨迹的异常点识别。为了证明基于物联网技术的舰船运行轨迹异常点识别方法的运行轨迹检测性能更好,将传统舰船运行轨迹异常点识别方法与该方法进行对比实验,实验结果证明该方法的运行轨迹检测性能优于传统方法。  相似文献   

16.
针对当前舰船航行轨迹跟踪精度的难题,设计了基于智能优化算法的舰船航行轨迹跟踪方法。首先结合舰船航行轨迹跟踪的特点,将舰船航行轨迹跟踪问题转换为一个多目标优化问题,然后引入智能优化算法对网格点的多目标优化问题进行求解,找到最优的舰船航行轨迹跟踪方案,最后进行舰船航行轨迹跟踪仿真测试,测试结果表明,智能优化算法获得了比传统算法更优的舰船航行轨迹跟踪精度,而且舰船航行轨迹跟踪的速度高,具有较好应用价值。  相似文献   

17.
针对多自主式水下航行器轨迹跟踪控制中的不确定性问题,研究多自主式水下航行器轨迹精准跟踪控制方法。构建基于灰色预测的轨迹精准跟踪控制模型,利用灰色预测模型预测航行器航向角,构建一元多项式回归模型,拟合航行器初始航向角同预测航向角间的残差,优化灰色预测模型,提升航行器航向角预测精度。将航向角预测结果代入PID控制器内,通过计算航向角控制率确定位置误差、速度误差与加速度误差,通过控制上述误差实现航行器轨迹准确跟踪控制。实验结果显示该方法可在航行器不同运动特性下准确跟踪轨迹,并具有较好的控制效果。  相似文献   

18.
传统蚁群算法只能单纯针对舰船路径进行规划,且在规划计算过程中仅能针对一个目标进行分析计算,导致计算中的有效信息素过少,计算所建立的规划控制模型准确度降低。因此,本文提出蚁群算法在舰船建模与控制中的应用。首先,采用蚁群算法对舰船航行场景进行建模,并对模型中的有效信息素进行优化量的导入更新。最后,对完成更新信息素的模型进行多目标参量计算,实现提升蚁群算法规划控制模型的精准度。为了证明设计的有效性,通过对比仿真实验来完成验证操作并得出可行性结论。  相似文献   

19.
传统舰船主机供油单元控制方法,存在供油缸体油量控制精度误差过大的问题。导致供油链路控制数据无法准确识别输出的实际油量,造成舰船动力控制异常。为了解决油量控制问题,提出嵌入式技术下舰船主机供油单元控制分析。根据供油单元中油腔阀体工作状态,对其建立伸缩模型;根据模型数据,对控制器控制逻辑变量进行定义;最后,根据新定义参量,完成对供油控制单元控制参量的更新,从而实现高精度油量控制的效果。通过与传统控制方法的多油量测试表明:提出的控制方法就能够满足不同油量,多次连续性的高精度供给控制,油量控制精度达到97.8%以上。  相似文献   

20.
为了更好保障船舶航行效果,有效实现在复杂海洋环境下对船舶航行速度进行有效控制的目标,提出基于人工智能的舰船航行速度自动调整方法。通过对舰船航行速度特征参数进行采集,获取船舶航行速度变化规律,并结合非线性模型实现对船舶航行速度的有效建模,减少环境干扰影响,有效降低船舶航行控制误差,保证速度调整的准确度。最后通过实验证实,本文提出的人工智能的舰船航行速度自动调整方法具有较高的实用性,充分满足研究要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号