首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   16篇
公路运输   33篇
综合类   26篇
水路运输   4篇
铁路运输   1篇
  2023年   3篇
  2022年   11篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2000年   2篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
排序方式: 共有64条查询结果,搜索用时 453 毫秒
51.
为了研究预应力混凝土连续箱梁桥后期下挠影响因素,以一典型3跨预应力混凝土连续梁桥为研究对象,采用规范和有限元数值计算结合的方法,分析了箱梁预应力损失和变形的时变效应,在此基础上,进一步分析了边中跨比、合龙顺序和合龙压重等因素对箱梁后期下挠的影响。分析结果表明,预应力混凝土连续箱梁桥的时变效应明显,收缩徐变引起的预应力损失和后期跨中下挠值较大;适当地增加边中跨比有利于减小后期中跨的跨中下挠;合龙时,先边跨后中跨合龙并采取适量的压重,是减小跨中后期下挠的有效手段。  相似文献   
52.
基于遗传算法的BP神经网络在桥梁安全评估中的应用   总被引:1,自引:0,他引:1  
为对桥梁的安全性进行科学准确的评估,基于遗传算法与BP神经网络提出了一种新的桥梁安全评估方法。该算法采用遗传算法和误差反向传播算法(BP)相结合的混合算法来训练前馈神经网络,即先用遗传算法进行全局训练,再用BP算法进行局部精确训练,既克服了传统BP网络训练时间长,易陷入局部极值的缺点,又提高了全局收敛的效率。采用该算法对一座悬索桥——宜昌长江大桥的安全性进行评估,并与专家评估结果进行对比分析。结果证明,该算法收敛速度快,预测精度高,为桥梁的安全评估提供了一种新思路。  相似文献   
53.
针对H55型挖掘机在高达60℃左右的环境温度下进行挖炉渣作业时出现的120℃的高温故障,对原机型油路系统的设计进行了分析及发热计算,并在此基础上提出了排除油温过高的有效措施。  相似文献   
54.
55.
以新疆小沙河中桥为背景,通过试验实测与有限元分析,研究西北极寒地区混凝土箱梁温度场分布特点及其温度效应。选取2016年1月20日至2016年2月20日实测温度数据作为研究对象,分析结果表明:受太阳辐射的影响,梁高方向存在明显的温度梯度,测点T1,T4最大温差达到6.4℃,测点T4,T6最大温差达到5.6℃;腹板壁厚方向存在明显的温度梯度,测点T3,T5之间最大温差达到5.6℃;底板沿壁厚方向存在明显的温度梯度,测点T7,T8之间最大温差达到8℃。基于传热学分析理论,建立混凝土箱梁温度场有限元模型,选取2016年1月27日06:00到2016年1月28日06:00的实测温度数据,验证了混凝土箱梁温度场有限元模型的准确性。在验证有限元模型准确性基础上,计算日照升温和寒潮降温作用下混凝土箱梁梁高、腹板以及底板壁厚方向的温度场分布,计算分析最不利时刻温度场作用下的混凝土箱梁的温度效应,并与现有规范进行对比。研究结果表明:西北极寒地区带沥青铺装的混凝土箱梁竖向温度梯度与规范有所差别,箱梁顶板温差较小,而底板温差较大;日照下腹板温度高于顶板,降温时顶板温度高于腹板;温度效应计算较规范更为不利,降温时在底板产生的拉应力可能使混凝土产生开裂;在进行西北地区混凝土箱梁的设计计算时,建议根据桥位处气象数据对温度效应进行分析。  相似文献   
56.
湿接缝作为预制混凝土桥面板现场施工的主要环节和最容易出现病害的部位,直接影响到预制混凝土桥面板的施工速度和使用性能。为给预制混凝土桥面板湿接缝的设计研究提供参考和依据,从构造特点、试验研究、使用性能和施工性能,对钢板湿接缝、预应力钢筋湿接缝、普通钢筋湿接缝和超高性能混凝土湿接缝进行总结和分析。  相似文献   
57.
提出一种新型桥梁结构形式——高性能钢管混凝土组合桁梁桥。从结构性能方面阐述该组合桁梁桥高效传力机制、高性能结构构件及节点力学性能,从预制件划分、存放、运输、拼接方面阐述组合桁梁桥高效装配施工性能,从防灾性能方面对组合桁梁桥与混凝土梁桥进行抗震性能有限元对比分析,从耐久性能、可维护性能及环保性能方面论述组合桁梁桥良好的服役性能。结果表明:高性能钢管混凝土组合桁梁桥各杆件受力明确,杆件材料利用率高,结构刚度大,当结构跨径达到80 m时,用钢量指标仍在400 kg·m-2以下;PBL加劲型等宽钢管混凝土节点可有效改善节点传力性能、静力破坏模式及抗疲劳性能;PBL加劲型矩形钢管混凝土构件可改善钢混界面传力及钢管局部屈曲性能,有效提高构件承载力;组合桁梁桥主桁单元、桥面板单元、桥墩单元可在工厂标准化生产,预制构件单元质量可控,现场装配速度快,施工周期短;与混凝土箱梁桥相比,组合桁梁桥结构体系地震响应内力下降显著,反应谱分析中纵桥向墩底弯矩与剪力下降达94.0%、81.2%,时程分析中纵桥向墩底弯矩下降达91.6%;采用可更换桥面板构件、桥墩系梁构件使组合桁梁桥全寿命周期性能优异。可见,矩形钢管混凝土组合桁梁桥是一种装配式高性能桥梁结构体系,可为中国中等跨径公路装配化桥梁设计提供参考。  相似文献   
58.
为探究连续曲线双工字钢-混凝土组合梁桥在弯扭组合作用下的力学性能,设计了一座曲线半径为200 m,跨径布置为17.5 m+17.5 m的连续曲线组合梁桥模型,并进行了静载试验,包括两点偏心弹性加载及四点对称破坏加载。试验测试了模型桥荷载-挠度关系曲线,控制截面钢梁、桥面板及钢筋应变分布,记录了模型桥的破坏过程及特征荷载,混凝土桥面板裂缝分布及裂缝宽度。结果表明:对称荷载作用下,曲率效应使外弧侧结构受力更不利;加载截面、中支点截面钢梁翼缘屈服后,第2跨加载点外弧钢梁腹板发生剪切屈曲,截面塑性转动能力受到钢板局部屈曲的限制;中支点桥面板裂缝分布范围超过计算跨径±20%;模型桥第2跨外梁破坏后,其他结构仍能继续承载,内弧侧结构延性指标远小于外弧侧,模型桥横桥向具有冗余性;竖向荷载作用下,模型桥弹性阶段截面正应力主要由弯曲正应力和约束扭转翘曲正应力组成,此外,钢梁下翼缘存在额外的横向弯曲正应力;最后,给出了钢梁下翼缘横向弯矩简化计算方法,并基于Vlasov薄壁结构理论,提出了双工字钢-混组合梁桥约束扭转截面特性计算方法。  相似文献   
59.
综述了无伸缩缝桥梁(简称“无缝桥”)技术发展,介绍了无缝桥优点、应用和研究热点,分析了无缝桥纵桥向受力特点、桩-土相互作用、台后土压力与抗震性能,指出了新技术研发与应用的现状与发展方向。分析结果表明:无缝桥技术受到许多国家的重视,已开展了大量的实桥监测和其他研究;在纵桥向受力方面,温度变形是其主因,现有规范中所给出的平均温差与实桥监测结果相差较大,应研究精度更高的计算方法;桩-土相互作用是整体桥受力的特点与研究的难点,在计算土抗力时,m法应限于小位移的无缝桥,位移较大时宜采用p-y曲线法;桥台桩基受力复杂,H型钢桩存在屈服、疲劳、屈曲的破坏可能,混凝土桩则易出现开裂病害;无缝桥温升时台后土压力增大,是研究的热点与难点,它随水平变形量和往复变形次数增大而增大的机理、量值和分布未达成共识,有待今后深入、系统的研究;纵桥向受力分析应建立全桥有限元模型,考虑结构-土相互作用和节点非线性性能;钢主梁受压稳定性和混凝土主梁抗裂性能是研究与设计的关键;引板是无缝桥的病害易发构件,面板式引板应减小板底摩阻力,避免开裂和末端沉降,而斜埋入式引板应控制其末端之上接线路面的隆起和下陷;许多无缝桥新技术已被提出并得到应用,今后还需深入研究,如:新材料与新构造在无缝桥各组成部分、台背、桩基与引板中的应用等;无缝桥具有较强的结构强健性、抗倒塌和防落梁能力,抗震研究已取得可喜的进展,但许多国家尚未形成相关的设计规定,应继续研究,为将来的应用和规范制订提供科学依据。   相似文献   
60.
为研究混凝土无缝桥温度作用取值的地域差异性,对一整体式无缝桥开展了长期温度测试,基于实测数据验证有限元温度场模拟方法的准确性;调研陕西省及周边省份46个国家基准气象站1993~2015年气象数据,对其中缺失太阳辐射数据的站点进行了补充,并将气象站日值数据分解为逐时数据用于温度场分析;利用气象数据进行了23年长期温度场模拟,并基于新西兰规范温度梯度模式,进一步通过广义帕累托模型计算了有效温度和温度梯度作用具有50年重现期的代表值;采用空间插值方法绘制了温度作用等值线地图,并对等值线地图进行简化得到了温度作用分区地图;考虑不同梁高和铺装厚度参数对温度作用模式进行了修正,并最后给出一个分区地图的应用案例,计算了陕西各分区内整体桥的跨径总长限值。研究结果表明:陕西地区有效温度分区地图分布趋势与《公路桥涵设计通用规范》(JTG D60—2015)基本吻合,但关中和陕南部分地区取值较规范更为不利,而对于温度梯度顶部温差,陕北和陕南的大部分地区均超过规范统一取值14 ℃;在梁高小于1.4 m时,不存在新西兰规范温度梯度模式中的等温段,修正后的温度梯度模式能准确反映不同梁高下的温度分布规律;沥青铺装厚度仅对顶部温差影响较大,不同铺装厚度情况下的顶部温差可按线性插值进行修正;整体桥主梁纵向变形量随桥长线性增长,可在自由伸缩变形的基础上通过过引入纵向伸缩量折减系数进行简化计算;桥长可通过考虑升温时的桥台弯曲破坏和降温时的桩低周疲劳破坏进行控制,根据实际合龙温度计算;在提出的3种温度分区中,最优合龙温度下的理论桥长最大值分别为290、240和220 m。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号