首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1908篇
  免费   18篇
公路运输   778篇
综合类   54篇
水路运输   517篇
铁路运输   48篇
综合运输   529篇
  2022年   23篇
  2021年   11篇
  2020年   14篇
  2019年   15篇
  2018年   67篇
  2017年   81篇
  2016年   161篇
  2015年   21篇
  2014年   67篇
  2013年   209篇
  2012年   108篇
  2011年   172篇
  2010年   161篇
  2009年   85篇
  2008年   136篇
  2007年   62篇
  2006年   31篇
  2005年   38篇
  2004年   29篇
  2003年   19篇
  2002年   28篇
  2001年   25篇
  2000年   16篇
  1999年   18篇
  1998年   20篇
  1997年   12篇
  1996年   23篇
  1995年   19篇
  1994年   11篇
  1993年   15篇
  1992年   10篇
  1991年   11篇
  1990年   8篇
  1989年   11篇
  1988年   16篇
  1987年   8篇
  1986年   12篇
  1985年   8篇
  1984年   15篇
  1983年   11篇
  1982年   8篇
  1981年   21篇
  1980年   9篇
  1979年   22篇
  1978年   7篇
  1977年   9篇
  1976年   8篇
  1975年   7篇
  1974年   8篇
  1973年   9篇
排序方式: 共有1926条查询结果,搜索用时 31 毫秒
971.
In this paper, a hardware-in-the-loop simulation (HILS) system was developed before the development of an electric power steering (EPS) system in a vehicle. This study was focused on the establishment of the HILS system. Driving conditions are simulated with the HILS system. The actual steering input parameters are confirmed on the monitor while driving the HILS system. The steering forces observed in the simulation with the developed HILS system are similar to those in real vehicle tests. The developed HILS system can be applied in the development of various types of EPS systems.  相似文献   
972.
An experiment was conducted to characterize the effects of SOF on EGR cooler fouling. A removable singletube test rig combined with a soot generator was developed to represent an EGR cooler and diesel exhaust gas. The use of a soot generator, which controlled the size and concentration of soot particles, enabled independent variables to be completely controlled. Either n-dodecane or diesel lube oil as substitute SOFs were vaporized and injected into the test rig to evaluate their effects on the growth of PM deposits and the degradation performance of the EGR cooler. Coolant temperature, which seemed to be associated with SOF content, was chosen as an independent variable, and PM deposit mass per unit area and the effectiveness drop versus time increased as the coolant temperature decreased. The PM deposit mass per unit area and effectiveness drop had maximum values at a coolant temperature of 40°C for every n-dodecane injection rate. For substitute SOFs tested in this experiment, the deposit mass increased when either n-dodecane or diesel lube oil was injected, but the effect of lube oil was more significant. Diesel lube oil seemed to have a stronger effect on the reduction of thermal conductivity by filling pores in the deposits. When diesel lube oil was injected, the deposit mass per unit area increased 127% compared to dry soot without injection. The effectiveness drop after 10 hours increased only 12.5%.  相似文献   
973.
In this study, a combined system consisting of a heat pump and a PTC heater was developed as a heating unit in electric vehicles. The system consists of a compressor, a condenser, an evaporator, an expansion device and a PTC heater. Experiments were conducted to examine the steady-state performance and dynamic characteristics of this system. The compressor speed, outdoor air inlet temperature, and indoor air inlet temperature were varied, and the performance of the system was experimentally investigated. The heating capacity, compressor power consumption and COP were obtained. Warm-up experiments were performed to investigate the dynamic characteristics of the system with a heat load of 1.5 kW in the indoor chamber. For the heat pump system, the PTC heater and the combined system, the heating performance and efficiency were investigated to determine an optimal control method. The results of this study agree well with the experimental results available in literature. This study provides experimental data of good quality for heating system design and the development of electric vehicles.  相似文献   
974.
Brake systems of the future, including BBW (Brake-by-Wire), are in development in various forms. In one of the proposed hydraulic BBW systems, an electric booster system replaces the pneumatic brake booster with an electric motor and a rotational-to-linear motion mechanism. This system is able to provide improved braking performance by the design of controllers with precise target pressure tracking and control robustness for better system reliability. First, a sliding mode controller is designed using the Lyapunov function approach to secure the robustness of the system against both the model uncertainty and the disturbance caused by the master cylinder and mechanical components. Next, a simulation tool is constructed to validate the electric booster system with the proposed controller. Finally, the electric booster system is implemented into an actual brake ECU and installed in a vehicle for testing under various braking conditions. The experimental results demonstrate that the proposed controller produces faster pressure build-up performance than the conventional brake system, and its tracking performance is sufficient to ensure comfortable braking.  相似文献   
975.
In lean-DeNOX catalysis reactions, hydrogen is a good reducing agent in PGM catalysts as well as an effective promoter in selective catalytic reduction reactions over base metal oxide catalysts. However, such a lean-DeNOX system, which uses hydrogen, requires an on-board fuel reforming system applicable to internal combustion engines. In this study, catalytic partial oxidation (CPOx) performance was tested in a laboratory for various reactants and hydrocarbon conditions. Volume concentrations of 5–10% oxygen and 0-5% water vapor were used to simulate diesel exhaust, and n-C12H26 was used as the feedstock for the reforming reaction. In the CPOx of n-C12H26, the highest hydrogen selectivity was 64% and was achieved at 100,000 h-1 GHSV. Additionally, the C/O ratio was less than unity in the absence of water vapor. However, as the water concentration was increased to 2.5 and 5.0 vol. % in the n-C12H26 CPOx reactions, the maximum hydrogen selectivity was increased from 64% in the absence of water to 70% and 75%, respectively. This effect is a consequence of the water-gas shift reaction over the catalyst bed. Regarding oxygen concentration effects, hydrogen selectivity slightly increased with increasing oxygen concentration from 10% to 15%. It was also found that the CPOx reaction of n-C12H26 can be ignited at temperatures below 300 C. Accordingly, it can be concluded that CPOx is a useful and feasible device for promoting diesel DeNOx catalysis in terms of hydrogen productivity and reaction initiation.  相似文献   
976.
Valve seats press-fitted in the cylinder head function to hold exhaust gas inside the ignition chamber and to transfer heat to the coolant moving in the water jacket of the head. The press-fitting of the valve seats to the head at ambient temperature has been widely spread out due to its many advantages over pressing with frozen valve seats or with a heated head. The benefits include lower equipment costs, lower running costs, and fewer installation faults during the press-fitting. Nevertheless, a systematic approach for pressing at ambient temperature (ATP; ambient temperature press-fitting) has not been studied and analyzed to date. A technique to check the reliability of the press-fitting by measuring hoop strain inside the valve seat and the FEM procedure to simulate ATP is developed in this study. The FEM procedure of ATP developed here exhibits a concurrence with experimental results. Utilizing the DOE (Design of Experiments) technique, we determined the effects of various geometric parameters and the optimal shapes of the valve seat and cylinder head. The optimal shapes have been successfully applied in an actual engine and varified in a running-engine test.  相似文献   
977.
Tripod constant velocity (TCV) joints are common components in automotive and mechanical applications. The benefits of the TCV joint are its high plunge capacity and high torque capacity. During power transmission, the friction inside the joint generates an axial force according to the kinematics. This force causes noise and vibration problems. In this study, a simplified multi-body dynamic model based on a phenomenological TCV joint friction model is developed. This model considers the generated axial force (GAF) of a TCV joint with different lubricate conditions. The efficiency and accuracy are verified by comparison with other prediction models and experiments. Thus, this model can be used to design and control the manufacture process of TCV joints.  相似文献   
978.
In a conventional MPI engine, a pulsation damper is usually mounted on the fuel rail to diminish undesirable noise in the vehicle cabin room; however, pulsation dampers are quite expensive. Therefore, several studies have focused on reducing fuel pressure pulsation by increasing the self-damping characteristics of the fuel rail. This paper details the development of a fuel rail that reduces pulsation using a self-damping effect. Using an oil hammer simulation technique, pressure pulsation characteristics were investigated with respect to the aspect ratio of the cross-section, wall thickness, and fuel rail material. Increasing the aspect ratio and decreasing the wall thickness efficiently reduced the pressure pulsation. In addition, the pressure pulsation characteristics were investigated with respect to the resonant engine speed and injection period. These simulated data can be used to reduce the pressure pulsation peak and to avoid the resonant point in the design stage during the development of a fuel rail.  相似文献   
979.
Ever increasing demand for the petroleum is causing faster than expected oil shortages in the supply and demand balance around the world and furthermore, many specialists in the field of oil production such as Association for the Study of Peak Oil and World Energy Outlook are claiming that the petroleum is around the peak of its production (Figure 1). Such shortage made the greatest impact on the gasoline price hikes at the gas pump and thus, this impact was felt by the consumers severely and became the greatest motivation for automotive industries to strive to pioneer the researches for the next generation vehicle configurations ranging from HEV, PHEV, Pure EV to FCHEV (collectively noted as xEV). While the great deal of researches has been carried over the last few decades, it is still far from mass productions for consumer use except for the HEV mainly due to the high cost involved with other types of xEV configurations. Therefore, it is critical to design the vehicle to maximize the use of each component at its highest point regardless of any cost scenarios and it is clear that this optimization can only be achieved through the accurate energy balance simulation for a specific target vehicle prior to the actual hardware implementation. In this paper, it is our intention to introduce modified dynamic battery modeling scheme that would provide a more accurate way of simulating the battery behavior when used in the vehicle energy simulation system. Starting from a typical battery dynamic model to predict the voltage given an imposed current request, we have introduced a new scheme to establish the relationship between the voltage and the power (rather than the current) requested by the vehicle simulation system. The proposed scheme handles the power request from the vehicle simulator considering the dynamic battery characteristics and in turn, contributes to the better estimation of the current integrated energy usage and battery SOC level in the given battery dynamic system used in the vehicle energy simulation system.  相似文献   
980.
Cornering maneuvers with reduced body roll and without loss in comfort are leading requirements for car manufacturers. An electric active roll control (ARC) system controls body roll angle with motor-driven actuators installed in the centers of the front and rear stabilizer bars. A vehicle analysis model developed using a CarSim S/W was validated using vehicle test data. Two ARC algorithms for a sports utility vehicle (SUV) were designed using a sliding-mode control algorithm based on a nonlinear roll model and an estimated lateral acceleration based on a linearized roll model. Co-simulation with the Matlab simulink controller model and the CarSim vehicle model were conducted to evaluate the performance of two ARC control algorithms. To validate the ARC performance in a real vehicle, vehicle tests were conducted at KATECH proving ground using a small SUV equipped with two ARC actuators, upper and lower controllers and a few subsystems. From the simulation and vehicle validation test results, the proposed ARC control algorithm for the developed ARC actuator prototypes improves the vehicle’s dynamic performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号