首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8956篇
  免费   116篇
公路运输   2092篇
综合类   835篇
水路运输   2793篇
铁路运输   980篇
综合运输   2372篇
  2022年   124篇
  2021年   74篇
  2020年   68篇
  2019年   84篇
  2018年   131篇
  2017年   134篇
  2016年   171篇
  2015年   110篇
  2014年   281篇
  2013年   1273篇
  2012年   402篇
  2011年   488篇
  2010年   362篇
  2009年   463篇
  2008年   403篇
  2007年   363篇
  2006年   337篇
  2005年   345篇
  2004年   309篇
  2003年   197篇
  2002年   166篇
  2001年   152篇
  2000年   155篇
  1999年   114篇
  1998年   136篇
  1997年   118篇
  1996年   142篇
  1995年   152篇
  1994年   86篇
  1993年   191篇
  1992年   162篇
  1991年   79篇
  1990年   84篇
  1989年   58篇
  1988年   75篇
  1987年   66篇
  1986年   61篇
  1985年   77篇
  1984年   73篇
  1983年   73篇
  1982年   73篇
  1981年   95篇
  1980年   68篇
  1979年   91篇
  1978年   56篇
  1977年   69篇
  1976年   53篇
  1975年   65篇
  1974年   51篇
  1973年   45篇
排序方式: 共有9072条查询结果,搜索用时 19 毫秒
991.
Air suspension systems have been implemented in various commercial vehicles, such as buses and special purpose trucks, because of the comfortable ride and easy height control. An evaluation of the durability of vehicle parts has been required for service life and safety starting in the early stages of design. The cyclic load applied to the vehicle can cause fatigue failure of parts, such as the suspension frame. This paper presents a method to predict the fatigue life of the suspension frame at the design stage of the air suspension system used in a heavy-duty vehicle. To estimate the fatigue life using the SN method, the Dynamic Stress Time History (DSTH) is necessary for the part of interest. DSTH can be obtained from the results of the flexible body dynamic analysis using the Belgian road simulation and the Modal Stress Recovery (MSR) method. Furthermore, the reliability of the predicted fatigue life can be evaluated by considering the variations in material properties. The probability and distribution of the expected life cycle can be obtained using experimental design with a minimum number of simulations. The advantage of using statistical methods to evaluate the life cycle is the ability to predict replacement time and the probability of failure of mass-produced parts. This paper proposes a rapid and simple method that can be effectively applied to the design of vehicle parts.  相似文献   
992.
The characteristics of auto-ignition and micro-explosion behaviors of one-dimensional arrays of fuel droplets suspended in a chamber with high surrounding temperature were investigated experimentally with various droplet spacings, numbers of droplet and surrounding temperatures. The fuels used were pure n-decane and emulsified n-decane with varied water contents ranging from 10 to 30%. All experiments were performed under atmospheric conditions with high surrounding temperatures. An imaging technique using a high-speed camera was adopted to measure ignition delay, flame lifetime, and flame spread speed. The camera was also used to observe micro-explosion behaviors. As the droplet array spacing increased, the ignition delay also increased, regardless of water content. However, the lifetime of the droplet array decreased as the droplet spacing increased. The micro-explosion starting time remained unchanged regardless of the number of the droplets or the droplet spacing; however, it tended to be delayed slightly as the water percentage and droplet spacing increased.  相似文献   
993.
People use cars so frequently that they always consider the air-conditioning, and thermal comfort of the driver and passenger when buying a new car. Therefore accurate simulation of the thermal performance of automobile air conditioners to improve human comfort has become increasingly important. In order to improve the thermal comfort of passengers, 3-D flow motion and thermal behavior within vehicles must be analyzed. In this paper, a numerical simulation was used to investigate thermal behavior in a vehicle. Because air temperature at an air vent is related to the cooling capacity of the air conditioner, the cooling capacity was calculated using ɛ-NTU (effective number of transfer unit) theoretical equations. Using the air temperature relationship between inlet and outlet vents as boundary conditions, a 3-D unsteady κ-ɛ turbulent model was used to give a transient analysis simulation of the temperature field and flow conditions in a vehicle’s passenger cabin. Cooling cycle analysis and conjugate heat transfer analysis at the inside surface of the cabin’s ceiling, floor and sides were also considered. The predicted temperature distributions in the vehicles passenger cabin were in good agreement with those obtained experimentally.  相似文献   
994.
The objective of this paper is to improve the performance estimation model of the internal flow field of a torque converter. Compared with performance experiment results, the converter based on the one-dimensional model does not satisfy the performance requirements demanded in practice. Therefore, we need to develop more predictable and reliable performance estimation models. In order to obtain shape information on three-dimensional blade geometry, a process of reverse engineering conducts a torque converter assembly, impeller, turbine and stator. In addition, a CFD simulation including mesh generation and post-processing was carried out to extract equivalent parameters from the internal flow field. The internal flow field can be explained by analyze the correlation between a performance estimation model and CFD analysis. The equivalent performance model adopts the variation of energy loss coefficients for a given operating condition according to the application of a changing energy loss coefficient by the least mean squares method. The estimated equivalent model improves the agreement in performance between experiments and the theoretical model. This model can reduce the error to within about 3 percent. Furthermore, this procedure for predicted performance achieves eminence in the estimation of the capacity factor.  相似文献   
995.
This paper establishes the simulation model of a city bus on the basis of the EQ6110 bus prototype and its experimental data. According to the actual urban driving cycle, the fuel economy and the traction performance of the EQ6110 city bus have been simulated, and factors such as the driving cycle, the loss of power to engine accessories, the gear-shifting strategy, the fuel shut-off strategy of the engine, etc., which influence on the bus’s fuel economy, are also quantitatively analyzed. Some conclusions are drawn as follows: (1) driving cycles have a great influence on the fuel economy of a city bus; (2) under the typical urban driving cycle of the public bus in China, the engine fuel shut-off strategy can save about 1 to 1.5 percent of the fuel consumption; and (3) the optimized gear-shifting rules can save 6.7 percent of the fuel consumption. Experimental results verify that the fuel economy for the EQ6110 public bus is improved by 7.2 pecent over the actual Wuhan urban driving cycle of the current public bus in China.  相似文献   
996.
Low viscosity engine oil can improve a vehicle’s fuel economy by decreasing the friction between the engine components. Frictional torque varies with the velocity change due to different viscosity characteristics of SAE grade 5W-20, 5W-30 and 5W-40 engine oils. The viscosity for each of these grades was measured to outline the effect low viscosity engine oils have on engine friction, which may lead to improved fuel economy. Engine oil seal frictional torque increases with the shaft rotational speed for all three engine oil grades. A decrease in engine oil seal frictional torque was confirmed when low viscosity engine oil was used. Also, the leak-free performance of the engine oil with the seal satisfied the life limit durability test criteria. Thus, low viscosity engine oil may be used to improve fuel economy by decreasing the frictional loss of the engine oil seal while having no negative impact on performance due to leak-free functioning.  相似文献   
997.
This paper describes the development of an optimal design process for a steering column system and supporting system. A design guide is proposed at the initial concept stage of the development process to obtain sufficient stiffness of the steering system while reducing the idle vibration sensitivity of the system. Case studies on resonance isolation are summarized, where vibration modes among the systems are separated by applying a vibration mode map at the initial stage of the design process. This study also provides design guidelines for an optimal dynamic damper system using a CAE (computer aided engineering) analysis. The damper FE (finite element) model is added to the vehicle model to analyze the relation between the frequency and the sensitivity of the steering column system. This analysis methodology makes it possible to achieve target performance in the early design stage and reduction of damper tuning activity after the proto car test stage. Through the proposed steering column system development process, a lightweight vehicle with high stiffness is possible prior to the proto build stage. Furthermore, the improved process is expected to contribute to reducing the overall development period and the number of proto car tests necessary to achieve the desired steering system performance.  相似文献   
998.
This paper is the second invstigation on the effect of fuel stratification on flame propagation. In the previous work, the characteristics under the no port-generated swirl condition, i.e., the conventional case was studied. In this work, the flame development under the low swirl condition was considered. For this purpose, the initial flame development and propagation were visualized under different axially stratified states in a modified optical single cylinder SI engine. The images were captured by an intensified CCD camera through the quartz window mounted in the piston. Stratification was controlled by the combination of the port swirl ratio and injection timing. These were averaged and processed to characterize the flame propagation. The flame stability was estimated by the weighted average of flame area and luminosity. The stability was also evaluated through the standard deviation of flame area and propagation distance and through the mean absolute deviation of the propagating direction. The results show that the flame-flow interaction determines the direction of flame propagation and that the governing roles of the two factors vary according to the stratified state and the location in the cylinder. In addition, the flame development and the initial flame stability are strongly dependent on the stratified conditions, and the initial flame stability is closely related to the engine stability and lean misfire limit. Lastly, there is no essential difference in gasoline and CNG flame propagation characteristics.  相似文献   
999.
The recursive component mode synthesis method (RCMS) has been implemented for the finite element analysis model of an automobile structure as an efficient free vibration analysis tool. The RCMS method is intended to obtain a better performance relative to the block Lanczos method, which is a traditional method in the industry of obtaining eigenvalues, while obtaining the acceptable accuracy. A numerical example of the automobile finite element model demonstrates the outstanding performance of RCMS compared to the block Lanczos method.  相似文献   
1000.
应用混合桩理论解释了钻孔灌注桩的极限摩阻力试验值与勘察值之间的差值,总结了极限荷载作用下桩的临界破坏面在桩周土中的分布规律,分析了孔隙比是影响钻孔灌注桩表面粗糙度的重要因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号