首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1267篇
  免费   3篇
公路运输   588篇
综合类   27篇
水路运输   317篇
铁路运输   23篇
综合运输   315篇
  2023年   4篇
  2022年   12篇
  2020年   5篇
  2019年   9篇
  2018年   50篇
  2017年   69篇
  2016年   151篇
  2015年   9篇
  2014年   27篇
  2013年   89篇
  2012年   74篇
  2011年   155篇
  2010年   146篇
  2009年   48篇
  2008年   108篇
  2007年   46篇
  2006年   12篇
  2005年   10篇
  2004年   19篇
  2003年   11篇
  2002年   16篇
  2001年   8篇
  2000年   11篇
  1999年   4篇
  1998年   13篇
  1997年   7篇
  1996年   15篇
  1995年   8篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   7篇
  1990年   4篇
  1989年   7篇
  1988年   10篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   7篇
  1983年   4篇
  1982年   3篇
  1981年   11篇
  1980年   3篇
  1979年   14篇
  1978年   5篇
  1977年   7篇
  1976年   6篇
  1975年   3篇
  1974年   3篇
  1973年   8篇
排序方式: 共有1270条查询结果,搜索用时 15 毫秒
991.
The commercial fuel cell products currently appearing on the market are self-contained fuel cell engines. These engines can be used for many applications that are presently dominated by internal combustion engines or batteries. Vehicle mounted fuel cell auxiliary power units have been attracting attention lately. Additionally, there is a market based incentive to use multiple small fuel cell arrays in place of a single large fuel cell for some applications. Typically, fuel cells are designed to operate as stand-alone units. This paper investigates the ability of small commercial stacks to operate in common array arrangements. Although an individual Nexa is able to produce 1500 W, Dual Nexas do not maintain that capability while in array configurations. With an overall load share ratio of 1.02:1 the series array reliably produced 2900 W of power, while with an overall load share ratio of 1.09:1 the parallel array reliably produced only 2800 W of power. This study shows that array orientation affects both system stack net efficiency and individual stack net efficiency. The information gained from this study may be helpful for fuel cell design and integration.  相似文献   
992.
Hydroplaning tires have been frequently simulated using commercial explicit FEM (Finite Element Method) codes. However, these simulations are slow, and the result of the lift force is so oscillatory that the hydroplaning speed cannot be accurately determined. Thus, in the author’s previous study, a new methodology using FDM (Finite Difference Method) code and an FE tire model iteratively was proposed. However, this full iteration method still required a long computation time, especially for patterned tires. Thus, in this study, the full iteration methodology was modified such that no iteration or only one additional iteration was needed at each speed. Then, by applying the full iteration method, no iteration method and one iteration method, the hydroplaning speeds of a straight-grooved tire were determined, and it was noted that the hydroplaning speed obtained from the one iteration method was almost the same as that obtained from the full iteration method. Moreover, the hydroplaning speeds of two patterned tires were determined using the one iteration method, and they were compared with the hydroplaning speeds obtained experimentally.  相似文献   
993.
Exhaust gas recirculation (EGR) is an emission control technology that allows for a significant reduction in NOx emissions from light- and heavy-duty diesel engines. The primary effects of EGR are a lower flame temperature and a lower oxygen concentration of the working fluid in the combustion chamber. A high pressure loop (HPL) EGR is characterized by a fast response, especially at lower speeds, but is only applicable if the turbine upstream pressure is sufficiently higher than the boost pressure. On the contrary, for the low pressure loop (LPL) EGR, a positive differential pressure between the turbine outlet and the compressor inlet is generally available. However, a LPL EGR is characterized by a slow response, especially at low and moderate speeds. In this study, of the future types of EGR systems, the dual-loop EGR system (which has the combined features of the high-pressure loop EGR and the low-pressure loop EGR) was developed and was optimized under five selected operating conditions using a commercial engine simulation program (GT-POWER) and the DOE method. Finally, significant improvements in the engine exhaust emissions and performance were obtained by controlling several major variables.  相似文献   
994.
A bus rollover is one of the worst vehicle accidents that can occur. Because of the large numbers of passengers, the casualties in a bus rollover are often high and severe. The compliance with rollover safety standards for buses and coaches is mandated by law. This paper presents a comparative analysis of the physical meanings of regulation number 66 of the Economic Commission for Europe (ECE R66) and standard number 220 of the American Federal Motor Vehicle Safety Standards (FMVSS 220). This comparison was carried out using a LS-DYNA finite-element analysis. After performing a comparative analysis following ECE R66 and FMVSS 220 assessments, the investigation further demonstrated the distortion configuration of the vehicle superstructure through the absorbed energy and its distribution over the vehicle and in sections of vehicle superstructure as well as the violation of the passenger compartment under the rollover testing conditions of both ECE R66 and FMVSS 220. Great differences were found between ECE R66 and FMVSS 220 in distortion configuration, reflecting differences in capability and rollover testing conditions. These findings provide a means of evaluating bus superstructure strength and provide guidelines useful in the assessment of regulations applied to the evaluation of bus rollover strength.  相似文献   
995.
This paper presents a method for the design of a controller for rollover prevention using active suspension and an electronic stability program (ESP). Active suspension is designed with linear quadratic static output feedback control methodology to attenuate the effect of lateral acceleration on the roll angle and suspension stroke via control of the suspension stroke and tire deflection of the vehicle. However, this approach has a drawback in the loss of maneuverability because the active suspension for rollover prevention produces in vehicles an extreme over-steer characteristic. To overcome this drawback of the active suspension based method, ESP is designed. Through simulations, the proposed method is shown to be effective in preventing rollover.  相似文献   
996.
The oxidation of unburned hydrocarbons from piston crevices was modeled using a modified one-step reaction equation. This new one-step oxidation model was developed by modifying the Arrhenius reaction rate coefficients of the conventional one-step reaction equation. The predictions of the new one-step oxidation model agree well with the results of the detailed chemical reaction mechanism in terms of the 90% oxidation time of the fuel. The effects of pressure and intermediate species in the burnt gas on the oxidation rate were also investigated and included as additional multiplying factors in the modification of the equation. To simulate the oxidation process of unburned hydrocarbons from a piston crevice, a two-dimensional computational mesh, based on the conventional engine geometry, was constructed with a fine mesh density at the regions of the piston crevice and cylinder wall. The number of cell layers in the cylinder was controlled according to the piston motion to model the out-flow of unburned hydrocarbons from the piston crevice during the expansion stroke. The effects of engine operational conditions on the oxidation rate were examined at several engine speeds and load conditions, and the sensitivity of the oxidation rate to the piston crevice volume was also evaluated. Finally, the new one-step oxidation model was applied to a three-dimensional computational mesh that modeled the three-dimensional engine geometry and piston-valve motions to simulate the oxidation of unburned hydrocarbons in a real engine condition.  相似文献   
997.
The random direction short Glass Fiber Reinforced Plastics (GFRP) have been prepared by two compression moulding processes, namely the Preform and Sheet Moulding Compound (SMC) processes. Cutting force analysis and surface characterization are conducted on the random direction short GFRPs with varying fiber contents (25∼40%). Edge trimming experiments are preformed using carbide inserts with varing the depth of cut and cutting speed. Machining characteristics of the Preform and SMC processed random direction short GFRPs are evaluated in terms of cutting forces, surface quality, and tool wear. It is found that composite primary processing and fiber contents are major contributing factors influencing the cutting force magnitudes and surface textures. The SMC composites show better surface finish over the Preform composites due to less delamination and fiber pullouts. Moreover, matrix damage and fiber protrusions at the machined edge are reduced by increasing fiber content in the random direction short GFRP composites.  相似文献   
998.
Recent developments in the aerospace and automotive industries have significantly affected the progress of modern manufacturing technologies, including the heat treatment of gear wheels. This view has been expressed in the works of Gräfen and Edenhofer (1999), Herring and Houghton (1995), Preisser et al. (1998) and Sugiyama et al. (1999). For ecological and economic reasons, however, traditional treatments are still in use. Additionally, the implementation of a new process in the aerospace industry is very difficult due to the safety precautions that are involved in this kind of production. In order to protect the surfaces of components from disadvantageous structural changes related to the hardening process (oxidation, decarburization and carburizing) galvanic copper plating is widely used even though the process is known to be harmful to the environment. On the other hand, as pointed out by Dawes and Cooksey (1965), it is commonly known that the most effective protection of a batch against these undesirable effects is a protective atmosphere applied during the heating. Therefore, the development of a fully controlled and repeatable process of gear wheel heat treatment under a protective atmosphere will reduce the global emission of toxic substances originating from galvanic copper plating and cooper stripping processes, while at the same time providing more effective protection of the parts.  相似文献   
999.
The in-cylinder RGF (residual gas fraction) of internal combustion engines for new combustion concepts, such as CAI (controlled auto ignition) or HCCI (homogenous charged compression ignition), is a major parameter that affects the combustion characteristics. Thus, measurement or prediction of the cycle-by-cycle RGF and investigation into the relation between the RGF and the combustion phenomena are critical issues. However, on-line prediction of the cycle-by-cycle RGF during engine testing is not always practical due to the requirement of expensive, fast response exhaust-gas analyzers and/or theoretical models that are just too slow for application. In this study, an on-line model that can predict the RGF of each engine cycle and cylinder during the experiment in the test cell has been developed. This enhanced model can predict the in-cylinder charge conditions of each engine cycle during the test in three seconds by using the measured dynamic pressures of the intake, exhaust, and cylinder as the boundary conditions. A Fortran77 code was generated to solve the 1-D MOC (method of characteristics). This code was linked to Labview DAQ as a form of DLL (dynamic link library) to obtain three boundary pressures for each cycle. The model was verified at various speeds and valve timings under the CAI mode by comparing the results with those of the commercial code, GT-Power.  相似文献   
1000.
Owing to significantly individual differences in everyday driving behavior, it is quite difficult to assess the relative importance of driver errors compared with vehicle faults or road environment anomalies. This paper briefly presents several basic concepts for analysis of driving dependability including driving errors, driving reliability, driver recovery from erroneous actions, and key factors that shape driving behavior. This presentation is followed by construction of a shaping architecture for driving behavior that consists of a perception stage, a decision-making stage, an execution stage and correlativity among stages, in addition to internal feedback from complex traffic states. The causation classification of driving errors is then discussed in the context of three elemental types: perception error, decision-making error and execution error. The emphasis of this paper is on how to quantify driving dependability in order to identify various erroneous driver actions during traffic accidents. Specifically, this paper proposes a methodology to measure the probability of driving errors by considering the driver recovery from erroneous actions. The purpose of model-based driving dependability analysis is to quantitatively and qualitatively analyze the relationship between driving errors and traffic accidents causations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号