首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4450篇
  免费   279篇
公路运输   1138篇
综合类   1602篇
水路运输   1041篇
铁路运输   583篇
综合运输   365篇
  2024年   18篇
  2023年   57篇
  2022年   111篇
  2021年   194篇
  2020年   226篇
  2019年   120篇
  2018年   108篇
  2017年   155篇
  2016年   147篇
  2015年   240篇
  2014年   406篇
  2013年   314篇
  2012年   387篇
  2011年   428篇
  2010年   274篇
  2009年   264篇
  2008年   237篇
  2007年   286篇
  2006年   252篇
  2005年   153篇
  2004年   81篇
  2003年   56篇
  2002年   44篇
  2001年   50篇
  2000年   19篇
  1999年   22篇
  1998年   14篇
  1997年   6篇
  1996年   10篇
  1995年   8篇
  1994年   5篇
  1993年   6篇
  1992年   11篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
排序方式: 共有4729条查询结果,搜索用时 31 毫秒
61.
62.
本文模拟建立了潜艇均衡系统自流注水试验系统,对不同假海压力、不同系统流量、不同出口背压及串联2台调节阀时自流注水稳定过程振动噪声进行研究。结果表明:潜艇均衡注水振动噪声随着假海深度的增大而增大;空气噪声随流量调节阀开度的增大而增大,在流量调节阀开度为60°-70°之间,振动加速度及水动力噪声产生峰值;在出口背压为0-0.5 MPa之间时,振动噪声值均大于无背压状态,峰值为0.2 MPa;串联2台流量调节阀可大幅降低自流注水振动噪声。  相似文献   
63.
In this paper, we study the boundedly rational route choice behavior under the Simon’s satisficing rule. A laboratory experiment was carried out to verify the participants’ boundedly rational route choice behavior. By introducing the concept of aspiration level which is specific to each person, we develop a novel model of the problem in a parallel-link network and investigate the properties of the boundedly rational user equilibrium (BRUE) state. Conditions for ensuring the existence and uniqueness of the BRUE solution are derived. A solution method is proposed to find the unique BRUE state. Extensions to general networks are conducted. Numerical examples are presented to demonstrate the theoretical analyses.  相似文献   
64.
The rapid growth in air traffic has resulted in increased emission and noise levels in terminal areas, which brings negative environmental impact to surrounding areas. This study aims to optimize terminal area operations by taking into account environmental constraints pertaining to emission and noise. A multi-objective terminal area resource allocation problem is formulated by employing the arrival fix allocation (AFA) problem, while minimizing aircraft holding time, emission, and noise. The NSGA-II algorithm is employed to find the optimal assignment of terminal fixes with given demand input and environmental considerations, by incorporating the continuous descent approach (CDA). A case study of the Shanghai terminal area yields the following results: (1) Compared with existing arrival fix locations and the first-come-first-serve (FCFS) strategy, the AFA reduces emissions by 19.6%, and the areas impacted by noise by 16.4%. AFA and CDA combined reduce the emissions by 28% and noise by 38.1%; (2) Flight delays caused by the imbalance of demand and supply can be reduced by 72% (AFA) and 81% (AFA and CDA) respectively, compared with the FCFS strategy. The study demonstrates the feasibility of the proposed optimization framework to reduce the environmental impact in terminal areas while improving the operational efficiency, as well as its potential to underpin sustainable air traffic management.  相似文献   
65.
66.
Adjusting traffic signal timings is a practical way for agencies to manage urban traffic without the need for significant infrastructure investments. Signal timings are generally selected to minimize the total control delay vehicles experience at an intersection, particularly when the intersection is isolated or undersaturated. However, in practice, there are many other potential objectives that might be considered in signal timing design, including: total passenger delay, pedestrian delays, delay inequity among competing movements, total number of stopping maneuvers, among others. These objectives do not tend to share the same relationships with signal timing plans and some of these objectives may be in direct conflict. The research proposes the use of a new multi-objective optimization (MOO) visualization technique—the mosaic plot—to easily quantify and identify significant tradeoffs between competing objectives using the set of Pareto optimal solutions that are normally provided by MOO algorithms. Using this tool, methods are also proposed to identify and remove potentially redundant or unnecessary objectives that do not have any significant tradeoffs with others in an effort to reduce problem dimensionality. Since MOO procedures will still be needed if more than one objective remains and MOO algorithms generally provide a set of candidate solutions instead of a single final solution, two methods are proposed to rank the set of Pareto optimal solutions based on how well they balance between the competing objectives to provide a final recommendation. These methods rely on converting the objectives to dimensionless values based on the optimal value for each specific objectives, which allows for direct comparison between and weighting of each. The proposed methods are demonstrated using a simple numerical example of an undersaturated intersection where all objectives can be analytically obtained. However, they can be readily applied to other signal timing problems where objectives can be obtained using simulation outputs to help identify the signal timing plan that provides the most reasonable tradeoff between competing objectives.  相似文献   
67.
为解决传统车队离散模型基于概率分布假设和现有交通流预测时间粒度过大不能应用于自适应信号配时优化等问题.在车队离散模型的建模思路上,先分析了下游交叉口车辆到达与上游交叉口车辆离去之间的关系,基于此构建了基于神经网络的小时间粒度交通流预测模型.该模型以上游交叉口离去流量分布为输入,下游交叉口到达流量分布为输出,时间粒度为5 s.最后,通过实际调查数据标定模型参数并应用模型预测下游交叉口到达流量.结果表明,与Robertson模型相比,本文模型预测结果能够更好地反映交通流的变化特征,平均预测误差减少了8.3%.成果可用于信号配时优化.  相似文献   
68.
It is well recognized that the left-turning movement reduces the intersection capacity significantly, because exclusive left turn phases are needed to discharge left turn vehicles only. This paper proposes the concept of Left-Hand Traffic (LHT) arterial, on where vehicles follow left-hand traffic rules as in England and India. The unconventional intersection where a LHT arterial intersects with a Right-Hand Traffic (RHT) arterial is named as symmetric intersection. It is only need three basic signal phases to separate all conflicts at symmetric intersection, while it at least need four signal phases at a conventional intersection. So, compared with the conventional intersection, the symmetric intersection can provide longer green time for the left-turning and the through movement, which can increase the capacity significantly. Through-movement waiting areas (TWAs) can be set at the symmetric intersection effectively, which can increase the capacity and short the cycle length furthermore. And the symmetric intersection is Channelized to improve the safety of TWAs. The Binary-Mixed-Integer-Linear-Programming (BMILP) model is employed to formulate the capacity maximization problem and signal cycle length minimization problem of the symmetric intersection. The BMILP model can be solved by standard branch-and-bound algorithms efficiently and outputs the lane allocation, signal timing decisions, and other decisions. Experiments analysis shows that the symmetric intersection with TWAs can increase the capacity and short the signal cycle length.  相似文献   
69.
以跨径为30 m的城市轨道交通槽形梁为研究对象,采用精细化有限元方法研究槽形梁设计几何参数梁高、道床板厚度及角隅斜率对其力学性能的影响。分析结果表明:槽形梁主梁截面刚度随梁高的增加而增加,在给定跨径30 m的情况下存在最佳梁高1.8 m;道床板厚度与横向跨度有关,横向跨度为4 m时,适宜的道床板厚度是0.26 m;角隅斜率对槽形梁的影响主要表现在结合处的力学性能,推荐使用1:(2.5~3.0)。  相似文献   
70.
In this research, we present a data-splitting algorithm to optimally solve the aircraft sequencing problem (ASP) on a single runway under both segregated and mixed-mode of operation. This problem is formulated as a 0–1 mixed-integer program (MIP), taking into account several realistic constraints, including safety separation standards, wide time-windows, and constrained position shifting, with the objective of maximizing the total throughput. Varied scenarios of large scale realistic instances of this problem, which is NP-hard in general, are computationally difficult to solve with the direct use of commercial solver as well as existing state-of-the-art dynamic programming method. The design of the algorithm is based on a recently introduced data-splitting algorithm which uses the divide-and-conquer paradigm, wherein the given set of flights is divided into several disjoint subsets, each of which is optimized using 0–1 MIP while ensuring the optimality of the entire set. Computational results show that the difficult instances can be solved in real-time and the solution is efficient in comparison to the commercial solver and dynamic programming, using both sequential, as well as parallel, implementation of this pleasingly parallel algorithm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号