首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   0篇
公路运输   55篇
综合类   12篇
水路运输   21篇
铁路运输   11篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   6篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   2篇
  2012年   24篇
  2011年   8篇
  2010年   6篇
  2009年   2篇
  2008年   5篇
  2007年   9篇
  2006年   4篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  1995年   1篇
排序方式: 共有99条查询结果,搜索用时 234 毫秒
61.
The top fuel dragster is the fastest and quickest vehicle in drag racing. This vehicle is capable of travelling a quarter mile in less than 4.5 s, reaching a final speed in excess of 330 miles per hour. The average power delivered by its engine exceeds 7000 Hp. To analyse and eventually increase the performance of a top fuel dragster, a dynamic model of the vehicle is developed. Longitudinal, vertical, and pitching chassis motions are considered, as well as drive-train dynamics. The aerodynamics of the vehicle, the engine characteristics, and the force due to the combustion gases are incorporated into the model. Further, a simplified model of the traction characteristics of the rear tyres is developed where the traction is calculated as a function of the slip ratio and the velocity. The resulting nonlinear, coupled differential equations of motion are solved using a fourth-order Runge–Kutta numerical integration scheme. Several simulation runs are made to investigate the effects of the aerodynamics and of the engine's initial torque in the performance of the vehicle. The results of the computational simulations are scrutinised by comparisons with data from actual dragster races. Ultimately, the proposed dynamic model of the dragster can be used to improve the aerodynamics, the engine and clutch set-ups of the vehicle, and possibly facilitate the redesign of the dragster.  相似文献   
62.
ABSTRACT

High-speed electric multiple units (EMUs) have been popularised rapidly all around the world and have become a major transportation method. Increases in running velocity and wheel-rail deterioration lead to excessive vibration and reduced ride comfort, which are common issues encountered in the operation of high-speed EMUs. While built-in sensors on a car body are able to detect abnormal vibrations in the car body itself, they cannot effectively reflect the ride comfort of passengers. Wheel-rail profile matching can improve the wheel-rail interaction, and rail grinding has thus been introduced as a practical solution to alleviating the aforementioned problems. Nonetheless, the working mechanism of rail grinding has not been investigated theoretically. This study develops flexible car body and human body models based on the rigid-flexible coupled method to systematically study the effects of wheel-rail wear and rail grinding on passenger ride comfort. Case studies show that the proposed models can predict the ride comfort of passengers accurately. It is also demonstrated that rail grinding can significantly alleviate excessive vibration and improve passenger ride comfort in the long term. A long-term investigation reveals that rail grinding can improve the smoothness of the rail surface and reduce the damage to the rail.  相似文献   
63.
Override simulations of two train units in frontal collision have been carried out using multi-body dynamics. The aim of this paper is to investigate the possible factors influencing the overriding behaviour throughout frontal collisions. In addition to the initial vertical offset defined in the standard EN 15227, the pitching motion of vehicles has a great effect on the overriding phenomenon. It depends on several factors, such as collision mass, pitching frequency, height of the centre of mass above the rail level. In this paper, it has been shown that the overriding phenomenon is more sensitive to variations in pitching frequency and height of the centre of mass, compared with the factor of the collision mass. Moreover, it has been demonstrated from simulation results that a 200-kN vertical force is required for the combined anti-climber devices (100 kN for each side anti-climber) to constrain the vertical relative motion between crashed train units.  相似文献   
64.
Wheel–rail wear is one of the important problems in the railway industry, especially from the point of safety, maintenance, and replacement cost. To investigate this phenomenon, it is necessary to simulate the wheel–rail interaction. The simulation results and in particular the wear number is not tangible enough to explain the wear condition of the system. For one set of simulation performed on two different railway systems one could obtain the same wear numbers, of say 100, while having two completely different wear rates. In order to have a better understanding of the wear condition, it is proposed to convert the wear numbers to wear rates. In doing so by measuring the wear rate, one determines the rate at which the wheel flange thickness is reduced. In this research, a new approach has been proposed to determine the wheel wear rate through multi-body dynamic analysis and simulation and the field measurements carried out on the fleet of one of Tehran's subway lines. This procedure could also be expanded to determine a wear criterion for specific lines and their fleets. Having this wear criterion would provide a better understanding of the simulation results either prior to the construction of railway lines or for the presently used ones. In other words, designers can simulate a railway line, not being constructed yet, and with a good approximation determine the critical points along the line with high wear rates, and make necessary modifications to decrease the wear.  相似文献   
65.
The resonance vibration of flexible car-bodies greatly affects the dynamics performances of high-speed trains. In this paper, we report a three-dimensional train–track model to capture the flexible vibration features of high-speed train carriages based on the flexible multi-body dynamics approach. The flexible car-body is modelled using both the finite element method (FEM) and the multi-body dynamics (MBD) approach, in which the rigid motions are obtained by using the MBD theory and the structure deformation is calculated by the FEM and the modal superposition method. The proposed model is applied to investigate the influence of the flexible vibration of car-bodies on the dynamics performances of train–track systems. The dynamics performances of a high-speed train running on a slab track, including the car-body vibration behaviour, the ride comfort, and the running safety, calculated by the numerical models with rigid and flexible car-bodies are compared in detail. The results show that the car-body flexibility not only significantly affects the vibration behaviour and ride comfort of rail carriages, but also can has an important influence on the running safety of trains. The rigid car-body model underestimates the vibration level and ride comfort of rail vehicles, and ignoring carriage torsional flexibility in the curving safety evaluation of trains is conservative.  相似文献   
66.
通过对舰用设备和舰用柴油机抗冲击评估研究现状的分析,结合柴油机的自身结构特点,提出了柴油机抗冲击评估研究的框架。分析了柴油机抗冲击评估的总体研究方法:多体动力学方法和有限元方法。提出了重要研究内容:柴油机冲击动力学的非线性问题、柴油机的冲击环境以及柴油机的冲击试验研究。指出了柴油机抗冲击评估需要注意的关键环节:动力传递组件、齿轮机构、轴承、凸轮机构、重要螺栓、间隙连接、管路等。  相似文献   
67.
试验场强化路载荷谱外推全寿命载荷谱是汽车构件疲劳耐久性能评判准确性的关键因素,针对参数法外推单分布估计的局限性,引入混合分布估计描述载荷谱多峰或复杂分布的综合特征。基于试验场强化路实车测试,应用多体动力学与有限元联合仿真,提取控制臂危险点应力谱;分别应用单分布和混合分布法解算应力谱拟合优度,以此为据选取应力谱最优均值、幅值概率密度并将应力谱循环外推至106次,应用FKM平均应力修正法编制8级应力谱,依据Miner准则分别从载荷幅值分布、损伤分布以及总损伤量等方面对单分布与混合分布外推应力谱进行综合分析。研究结果表明:应用拟合优度能较好评估两分布对应力谱均、幅值拟合程度,混合分布拟合效果优于单分布,拟合优度均为98%,对应力谱分布特征描述更为精确,可为外推提供较真实的载荷分布概率密度,从而提高外推载荷谱精度;比较应用2种分布拟合的外推载荷谱,损伤分布趋势相近,中级载荷损伤占比高,单分布外推载荷谱总损伤量为6.3×10-4,大于混合分布外推载荷谱总损伤为5×10-4,寿命预测偏于保守,导致耐久性设计裕度较大,应用混合分布外推能提高耐久性评估与轻量化设计精度。  相似文献   
68.
基于柔性多体动力学理论和拉格朗日方程建立了三节臂的桥梁检测车臂架的机械系统动力学模型。采用数值求解和结合动力学仿真分析软件,证明了柔性多体动力学方法建立的桥梁检测车臂架的运动微分方程,可以准确地描述桥梁检测车的各项动力学特性。通过对桥梁检测车臂架末端轨迹和驱动特性分析,表明了对于轻质长臂杆的桥梁检测车臂架系统必须考虑其柔性变形的影响。  相似文献   
69.
南广高速铁路郁江大桥车桥耦合振动仿真分析   总被引:1,自引:0,他引:1  
为探讨列车高速通过大跨度双塔钢桁斜拉桥时的耦合振动效应,为同类桥梁的设计提供参考,以南宁—广州高速铁路郁江大桥(大跨度钢桁斜拉桥)为研究对象,建立了车桥系统耦合振动仿真模型.采用有限元软件ANSYS建立斜拉桥的动力分析模型,计算其自振特性;采用多体系统动力学软件SIMPACK建立德国ICE3列车的空间动力学模型;采用SIMPACK与ANSYS相结合的联合仿真方法,计算不同运行速度时车桥系统的空间耦合振动响应.结果表明:当列车分别以250,270,290和300 km/h的速度通过该桥时,其运行安全性指标均满足规范要求;动车和拖车的Sperling舒适性指标均小于2.5;该桥梁的最大竖向挠跨比为1/1 843,最大横向挠跨比为1/83 000,最大竖向和横向加速度分别为0.386和0.107 m/s2,冲击系数最大值为1.200,表明该桥梁具有足够的刚度,振动状态良好.  相似文献   
70.
针对时速400km高速检测列车,建立了刚柔耦合的车辆非线性系统动力学模型,探讨了车下弹性悬挂系统的振动特性.通过仿真和理论分析,研究了检测列车整备状态车体结构模态参数与车下悬挂设备模态参数间的匹配关系,给出整备状态车体与车下有源设备最佳模态参数匹配原则,确定了车体与车下设备悬挂件最佳匹配参数.研究结果表明:该方法可以根据车下悬挂系统的动态响应,有效确定时速400km高速检测列车的最佳车下悬挂方案.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号