首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2060篇
  免费   110篇
公路运输   434篇
综合类   771篇
水路运输   329篇
铁路运输   345篇
综合运输   291篇
  2024年   2篇
  2023年   8篇
  2022年   40篇
  2021年   77篇
  2020年   62篇
  2019年   34篇
  2018年   50篇
  2017年   66篇
  2016年   94篇
  2015年   90篇
  2014年   173篇
  2013年   147篇
  2012年   163篇
  2011年   158篇
  2010年   125篇
  2009年   126篇
  2008年   116篇
  2007年   174篇
  2006年   142篇
  2005年   75篇
  2004年   64篇
  2003年   45篇
  2002年   32篇
  2001年   28篇
  2000年   20篇
  1999年   12篇
  1998年   5篇
  1997年   7篇
  1996年   5篇
  1995年   13篇
  1994年   6篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1989年   2篇
排序方式: 共有2170条查询结果,搜索用时 187 毫秒
71.
长江南京以下12.5 m深水航道二期工程建设是落实国家"一带一路"战略、打造长江综合立体交通走廊的重大举措。针对二期工程河段4个水道的碍航情况,在分析上游来流来沙特性、各水道分流分沙特性及演化过程的基础上,对碍航特性、河床演变特性及趋势进行分析,提出各水道的整治时机、关键部位和治理思路。成果为航道整治工程设计与建设提供技术支撑,也为感潮河段航道整治积累经验。  相似文献   
72.
Congestion charging is being considered as a potential measure to address the issue of substantially increased traffic congestion and vehicle emissions in Beijing. This study assessed the impact of congestion charging on traffic and emissions in Beijing using macroscopic traffic simulation and vehicle emissions calculation. Multiple testing scenarios were developed with assumptions in different charging zone sizes, public transit service levels and charging methods. Our analysis results showed that congestion charging in Beijing may increase public transit use by approximately 13%, potentially reduce CO and HC emissions by 60–70%, and reduce NOx emissions by 35–45% within the charging zone. However, congestion charging may also result in increased travel activities and emissions outside of the charging zone and a slight increase in emissions for the entire urban area. The size of charging zone, charging method, and charging rate are key factors that directly influence the impact of congestion charging; improved public transit service needs to be considered as a complementary approach with congestion charging. This study is used by Beijing Transportation Environment and Energy Center (BTEC) as reference to support the development of Beijing’s congestion charging policy and regulation.  相似文献   
73.
Intercity passenger trips constitute a significant source of energy consumption, greenhouse gas emissions, and criteria pollutant emissions. The most commonly used city-to-city modes in the United States include aircraft, intercity bus, and automobile. This study applies state-of-the-practice models to assess life-cycle fuel consumption and pollutant emissions for intercity trips via aircraft, intercity bus, and automobile. The analyses compare the fuel and emissions impacts of different travel mode scenarios for intercity trips ranging from 200 to 1600 km. Because these modes operate differently with respect to engine technology, fuel type, and vehicle capacity, the modeling techniques and modeling boundaries vary significantly across modes. For aviation systems, much of the energy and emissions are associated with auxiliary equipment activities, infrastructure power supply, and terminal activities, in addition to the vehicle operations between origin/destination. Furthermore, one should not ignore the embodied energy and initial emissions from the manufacturing of the vehicles, and the construction of airports, bus stations, highways and parking lots. Passenger loading factors and travel distances also significantly influence fuel and emissions results on a per-traveler basis. The results show intercity bus is generally the most fuel-efficient mode and produced the lowest per-passenger-trip emissions for the entire range of trip distances examined. Aviation is not a fuel-efficient mode for short trips (<500 km), primarily due to the large energy impacts associated with takeoff and landing, and to some extent from the emissions of ground support equipment associated with any trip distance. However, aviation is more energy efficient and produces less emissions per-passenger-trip than low-occupancy automobiles for trip distances longer than 700–800 km. This study will help inform policy makers and transportation system operators about how differently each intercity system perform across all activities, and provides a basis for future policies designed to encourage mode shifts by range of service. The estimation procedures used in this study can serve as a reference for future analyses of transportation scenarios.  相似文献   
74.
While the phenomenon of excess vehicle emissions from cold-start conditions is well known, the magnitude and duration of this phenomenon is often unclear due to the complex chemical processes involved and uncertainty in the literature on this subject. This paper synthesizes key findings regarding the influence of ambient and engine temperatures on light-duty vehicle (LDV) emissions. Existing literature, as well as analytical tools like the U.S. Environmental Protection Agency’s Motor Vehicle Emission Simulator (MOVES), indicate that while total vehicle emissions have dropped significantly in recent years, those associated with cold starts can still constitute up to 80% for some pollutant species. Starting emissions are consistently found to make up a high proportion of total transportation-related methane (CH4), nitrous oxide (N2O), and volatile organic compounds (VOCs). After 3–4 min of vehicle operation, both the engine coolant and the catalytic converter have generally warmed, and emissions are significantly lower. This effect lasts roughly 45 min after the engine is shut off, though the cooling rate depends greatly on the emission species and ambient temperature. Electrically (pre-)heated catalysts, using the bigger batteries available on hybrid drivetrains and plug-in vehicles, may be the most cost-effective technology to bring down a sizable share of mobile source emissions. Trip chaining (to keep engines warm) and shifting to non-motorized modes for shorter trips, where the cold start can dominate emissions, are also valuable tactics.  相似文献   
75.
Tailpipe emissions from vehicles on urban road networks have damaging impacts, with the problem exacerbated by the common occurrence of congestion. This article focuses on carbon dioxide because it is the largest constituent of road traffic greenhouse gas emissions. Local Government Authorities (LGAs) are typically responsible for facilitating mitigation of these emissions, and critical to this task is the ability to assess the impact of transport interventions on road traffic emissions for a whole network.This article presents a contemporary review of literature concerning road traffic data and its use by LGAs in emissions models (EMs). Emphasis on the practicalities of using data readily available to LGAs to estimate network level emissions and inform effective policy is a relatively new research area, and this article summarises achievements so far. Results of the literature review indicate that readily available data are aggregated at traffic level rather than disaggregated at individual vehicle level. Hence, a hypothesis is put forward that optimal EM complexity is one using traffic variables as inputs, allowing LGAs to capture the influence of congestion whilst avoiding the complexity of detailed EMs that estimate emissions at vehicle level.Existing methodologies for estimating network emissions based on traffic variables typically have limitations. Conclusions are that LGAs do not necessarily have the right options, and that more research in this domain is required, both to quantify accuracy and to further develop EMs that explicitly include congestion, whilst remaining within LGA resource constraints.  相似文献   
76.
Walking is an imperative travel mode, especially for short trips. Walking accessibility, which is defined as the ease of reaching essential destinations in the walk-in catchment area, may affect property prices because residents are more likely to be willing to pay for this attribute. In addition, different categories of public services may have varied influencing directions and magnitude. These two hypotheses are tested in this study. Taking Xiamen, China as a case study, we estimate the cumulative opportunities of public services on foot and develop a set of hedonic pricing models (more specifically, two pre-specified ordinary least squares models, four Box-Cox transformed models, and two spatial econometric models) to estimate, whether and to what extent, walking accessibility contributes to price premiums (or discounts). Using a database of 22,586 second-hand residential properties in 358 multi- or high-storey residential complexes, we find that (1) walking accessibility to public services contributes to the variations in housing prices and plays a role in determining housing prices; (2) different categories of services have vastly divergent, even opposite, influencing impacts; and (3) walking accessibility to primary schools, commercial centers, and sports and cultural centers have positive effects on house prices whereas walking accessibility to comprehensive hospitals adversely affects housing prices. Methodologically, we confirm that spatial econometric methods improve estimation accuracy and have more explanatory power relative to the standard non-spatial models. Robustness check analysis further guarantees the plausibility of this study.  相似文献   
77.
Imposing driving restrictions is becoming increasingly popular as a policy intended to control urban air pollution. Existing studies on this topic offer highly mixed observations, and each study tends to focus on only one city. In this paper, we used 11 Chinese cities with driving restrictions as the treatment group, and compared them to other cities that did not implement the policy. Based on a propensity score matching and difference-in-difference analysis, we found no evidence of a decrease in PM10 concentrations in cities after they implemented driving restrictions. This finding may be attributed to an increase in the number of cars in these cities after implementing driving restrictions, but we also found no evidence of an improvement in air quality for a given number of cars after implementation of the policies.  相似文献   
78.
In this study, the effects of isolated traffic calming measures and area-wide calming schemes on air quality in a dense neighborhood were estimated using a combination of microscopic traffic simulation, emission, and dispersion modeling. Results indicated that traffic calming measures did not have as large an effect on nitrogen dioxide (NO2) concentrations as the effect observed on nitrogen oxide (NOx) emissions. Changes in emissions resulted in highly disproportional changes in pollutant levels due to daily meteorological conditions, road geometry and orientation with respect to the wind. Average NO2 levels increased between 0.1% and 10% with respect to the base-case while changes in NOx emissions varied between 5% and 160%. Moreover, higher wind speeds decreased NO2 concentrations on both sides of the roadway. Among the traffic calming measures, speed bumps produced the highest increases in NO2 levels.  相似文献   
79.
This paper estimates the price and income elasticities of air cargo demand and examines how they may change after the 2008 financial crisis. Using a set of time series data, we simultaneously estimate the aggregated demand and supply functions of air cargo at Hong Kong International Airport (HKIA). We find that during the entire sampling period of 2001–2013, the price elasticity for air cargo transport demand at HKIA ranges from −0.74 to −0.29, suggesting that air cargo demand in Hong Kong reacts negatively to price (as expected) but does not appear to be very sensitive to price. The income elasticity ranges from 0.29 to 1.47 and appears sensitive to seasonality adjustment approaches. However, in terms of the speed of changes, air cargo demand changes much faster than overall economy, indicating the presence of a pro-cyclical pattern of air cargo traffic with respect to the overall economy. Our analysis shows that air cargo demand becomes more sensitive to changes in both price and income after 2008.  相似文献   
80.
This paper investigates the market potential and environmental benefits of replacing internal combustion engine (ICE) vehicles with battery electric vehicles (BEVs) in the taxi fleet in Nanjing, China. Vehicle trajectory data collected by onboard global positioning system (GPS) units are used to study the travel patterns of taxis. The impacts of charger power, charging infrastructure coverage, and taxi apps on the feasibility of electric taxis are quantified, considering taxi drivers’ recharging behavior and operating activities. It is found that (1) depending on the charger power and coverage, 19% (with AC Level 2 chargers and 20% charger network coverage) to 56% (with DC chargers and 100% charger network coverage) of the ICE vehicles can be replaced by electric taxis without driving pattern changes; (2) by using taxi apps to find nearby passengers and charging stations, drivers could utilize the empty cruising time to charge the battery, which may increase the acceptance of BEVs by up to 82.6% compared to the scenario without taxi apps; and (3) tailpipe emissions in urban areas could be significantly reduced with taxi electrification: a mixed taxi fleet with 46% compressed-natural-gas-powered (CNG) and 54% electricity-powered vehicles can reduce the tailpipe emissions by 48% in comparison with the fleet of 100% CNG taxis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号