首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   928篇
  免费   0篇
公路运输   246篇
综合类   132篇
水路运输   174篇
铁路运输   205篇
综合运输   171篇
  2023年   11篇
  2022年   8篇
  2021年   25篇
  2020年   34篇
  2019年   23篇
  2018年   45篇
  2017年   41篇
  2016年   43篇
  2015年   47篇
  2014年   51篇
  2013年   41篇
  2012年   62篇
  2011年   58篇
  2010年   33篇
  2009年   32篇
  2008年   45篇
  2007年   51篇
  2006年   66篇
  2005年   53篇
  2004年   26篇
  2003年   24篇
  2002年   9篇
  2001年   18篇
  2000年   13篇
  1999年   14篇
  1998年   9篇
  1997年   14篇
  1996年   8篇
  1995年   9篇
  1994年   9篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
排序方式: 共有928条查询结果,搜索用时 15 毫秒
921.
In various engineering fields like aerospace and aircraft structures or marine and offshore platforms, constitutive material of critical components should be made of specific materials that can work properly in the required workspace. Such materials must have excellent properties such as high mechanical strength as well as great resistance to corrosion, oxidation, and creep. Inconel 625 is a superalloy that is chosen as constitutive material of critical components due to its great abilities. On the other hand, since investigating Inconel 625 pipe has not been done yet, different mechanical characteristics of using structures made of Inconel 625 should be assessed. Additionally, doing so would be necessary to gather information for current industrial affairs and also future investigations. Therefore, the nonlinear dynamic instability response of axially loaded Inconel 625 pipes is investigated in the current article. The pipe structure is modeled via the Donnell shell theory and nonlinear von Kármán theory. The motion equations of pipes are established by applying the Hamiltonian approach. Then, in order to alter the nonlinear derived partial differential equations into the Mathieu-Hill equation, both Navier's solution and Airy stress function are implemented. Additionally, the amplitudes of steady-state oscillation of the Inconel 625 pipe are determined by employing Bolotin's method. Eventually, the impacts of various effective parameters on the nonlinear dynamic behaviors of Inconel 625 pipes are evaluated. The results indicate static and dynamic load factors possess a remarkable effect on instability exciting areas and steady-state vibration amplitudes of pipe. Moreover, the dynamic instability response of the pipe is dependent on the radius-to-thickness and length-to-radius ratios, and also how the ratios are affected depends on the wave number.  相似文献   
922.
Internal solitary waves with a huge amount of energy easily trigger the large dynamic responses of riser-wellhead system and threaten its structural safety. However, previous studies have only focused on the dynamic response of the riser under internal solitary waves. The riser may experience excessive traction from the platform, especially from the mooring platform, in response to the arrival of internal solitary waves. The bottom of the riser connects to the wellhead system, which in turn exerts a reaction force on the riser. To address this problem, a coupled dynamic model of deep-water drilling mooring platform-riser-wellhead system under internal solitary waves is developed in this paper. A dynamic response analysis method based on the fourth-order Runge-Kutta method and finite element method is also proposed for the mooring platform-riser-wellhead system. A dynamical solver for the coupled system is then developed using MATLAB. The dynamic response characteristics of the riser-wellhead system under internal solitary waves are calculated. Results show that the displacement and bending moment of the system initially increases and then decreases along with the propagation of internal solitary waves, and finally reach equilibrium position. The displacement and bending moment reach their peak before the trough of internal solitary waves passes through the riser-wellhead system. The dynamic responses of the riser-wellhead system under the influence of internal solitary wave loads are much larger than those without the effect of internal solitary wave loads. The riser system experiences shearing loads at the interface of internal solitary waves, which trigger a step-like bending moment variation. The bending moment of the conductor under the mudline is greatly increased by the internal solitary waves.  相似文献   
923.
In this paper, the dynamic responses and energy dissipation characteristics of polyvinyl chloride (PVC) foam core sandwich plates under ice impact are investigated. The ice impact tests of PVC foam core sandwich plates were conducted by employing the horizontal impact experimental apparatus. The finite element simulations were conducted to analyze the dynamic response of PVC foam core sandwich plates based on soil and concrete material model for ice impactor. It was demonstrated that numerical results were in good agreement with experimental results. The deformation modes of the top facesheets were coupling of local indentation with global bending deformation, while the deformation modes of bottom facesheets were overall bending deformation. The permanent deformation of face sheets show that the impact resistance of sandwich plate is better than that of equivalent weight hull plate (EWHP). In addition, based on the actual navigation environment of ship, the effect of impact angle and ice floe shape on dynamic response and energy dissipation are analyzed.  相似文献   
924.
Hydrodynamic load and motion response are the first considerations in the structural design of a submerged floating tunnel (SFT). Currently, most of the relevant studies have been based on a two-dimensional model test with a fixed or fully free boundary condition, which inhibits a deep investigation of the hydrodynamic characteristics with an elastic constraint. As a result, a series of difficulties exist in the structural design and analysis of an SFT. In this study, an SFT model with a one-degree-of-freedom vertical elastically truncated boundary condition was established to investigate the motion response and hydrodynamic characteristics of the tube under the wave action. The effect of several typical hydrodynamic parameters, such as the buoyancy-weight ratio, γ, the relative frequency, f/fN, the Keulegan–Carpenter (KC) number, the reduced velocity, Ur, the Reynolds number, Re, and the generalized Ursells number, on the motion characteristics of the tube, were selectively analyzed, and the reverse feedback mechanism from the tube's motion response to the hydrodynamic loads was confirmed. Finally, the critical hydrodynamic parameters corresponding to the maximum motion response at different values of γ were obtained, and a formula for calculating the hydrodynamic load parameters of the SFT in the motion state was established. The main conclusions of this study are as follows: (i) Under the wave action, the motion of the SFT shows an apparent nonlinearity, which is mainly caused by the intensive interaction between the tube and its surrounding water particles, as well as the nonlinearity of the wave. (ii) The relative displacement of the tube first increases and then decreases with increasing values of f/fN, Ur, KC number, Re, and the generalized Ursells number. (iii) γ is inversely proportional to the maximum relative displacement of the tube and the wave force on the tube in its motion direction. (iv) Under the motion boundary condition (as opposed to the fixed boundary condition), the peak frequency of the wave force on the SFT in its motion direction decreases and approaches the natural vibration frequency of the tube, whereas the wave force perpendicular to the motion direction increases. When the incident wave frequency is close to the natural vibration frequency of the tube, the tube resonates easily, leading to an increased wave force in the motion direction. (v) If the velocity in the Morison equation is substituted by the water particle velocity measured when the tube is at its equilibrium position, the inertia coefficient in the motion direction of the tube is linearly related to its displacement, whereas that in the direction perpendicular to the motion direction is logarithmically related to its displacement.  相似文献   
925.
Sigma Energy has performed its foremost prototype tests of scaled wave energy converter in a real sea environment. The prototype was a point absorber with a cylindrical buoy, a mechanical power take-off system with a counterweight, moored to the seabed as a tension leg platform (TLP) with three equal tendons. In these extensive experiments, numerous device characteristics were measured and analysed. The present paper focuses on the dynamic forces in the mooring lines, and some unexpected and rare data obtained. It is well known that TLP tendons are prone to a brief loss of tension (the slacking) and that, after such events, high snapping forces of short duration can arise. Partly by intention, and partly due to underestimation of the dynamical forces, several such slacking-snapping incidents were recorded during the experiments. In some severe storms, the snapping forces were up to six times higher than the tendon pretension. The paper presents several recordings of dynamic forces and platform motion during these critical events. It analysis them, and gives a typical scenario under which they occur. It gives also some theoretical explanations, and numerical predictions of dynamical tendon forces, with their comparison to the experimental results.  相似文献   
926.
927.
For offshore structures such as offshore wind turbines (OWT), typhoon is usually considered one of the most critical threats to structural safety performances and service life due to its heavy wind, wave, and even coexisted storm surge. Meanwhile, it is challenging to obtain the systematic data from the environmental conditions, structural dynamic vibrations and the SCADA record, when typhoon passes by the offshore wind farm. Taking into account these situations, a real-time multi-source monitoring system enabling the investigation of the typhoon impact on the performances of OWT, has been firstly established and implemented to a 4.0 MW mono-pile OWT in Rudong, Jiangsu, China. One of the major contributions in this work is to develop the monitoring system using a unique environment of real-world data that has been synchronously obtained from waves, winds, vibrational accelerations, inclinations of towers and SCADA data during the typhoon “In-fa” passing by the wind farm, and provide the scientific community with the underlying standards and technical recommendations. To investigate the influence caused by “In-fa”, comparison results of the measured data in the range of June to August have been analysed. It is worth noting that two conclusions have been obtained: (1) the region near the nacelle is not always the most critical vibrational area. Actually, the change of the maximum structural response in the position under different external loads should be applied to effectively evaluate the structural safety; (2) the measured accelerations exhibit an obvious decay process in the presence of the turbine rotor-stop, but not the yaw rigid-body motion. This observation promotes the accurate identification of modal parameters for the long-term monitoring. Consequently, these valuable findings to facilitate the assessment of structural operational conditions have been developed into two guide-lines. All the data and analyses presented in this paper provide a valuable insight into the design, energy efficiency, safety monitoring and damage diagnosis of OWT structures.  相似文献   
928.
One of the difficult operations, which consists in moving the riser and placing its end relatively close to a desired position, is the re-entry operation. Complex dynamic behavior of risers under different sea conditions requires efficient modelling methods. The model used in this paper applies a modification of the segment method using joint coordinates, in which it is possible to analyze only one selected deformation while neglecting the others. This enables a very high computational efficiency of the method to be achieved. The models developed take into account the impact of the environment in which the risers work. The model is validated by comparison of the authors' own results with those presented by other researchers and the simulations are concerned both with statics and dynamics of spatial risers. The numerical effectiveness of the method presented enables it to be applied in the solution of dynamic optimization problems, one of which is presented by the example of the re-entry process. The process of moving the riser is useful in emergency situations (evacuation) when it is necessary to disconnect the riser from the wellhead and move it together with the platform. This optimization task is a 3D problem due to the sea currents acting at different angles on the riser in relation to the direction defined by beginning and final positions of the bottom end of the riser. The calculations are carried out for a hang-off riser, and the optimal motion of the base for different conditions of the sea is defined. The influence of the LMRP (Lower Marine Riser Package) on this movement is also examined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号