首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   2篇
公路运输   10篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2012年   3篇
排序方式: 共有10条查询结果,搜索用时 281 毫秒
1
1.
为提高电动汽车经济性从而延长其续驶里程,以一款新型的多模式双电机耦合驱动构型电动汽车(DM-EV)作为研究对象,针对该电动汽车的系统构型及工作模式进行分析,重点研究了以瞬时能耗最小为目标,结合模式切换预估算法来进行优化的控制策略。通过仿真与台架试验验证了所提出控制策略与驱动构型的有效性。仿真结果表明,在城市拥堵工况、城市一般工况、高速公路工况下,采用模式切换预估算法可使汽车能量利用率分别提高2. 2%,3. 6%,1. 7%。台架试验验证结果表明,所研究的驱动系统与一般单电机驱动系统对比,其能量利用率比后者分别提高14. 2%,11. 5%,10. 1%。  相似文献   
2.
为充分发挥一款双电机耦合驱动系统电动汽车(DMCP-EV)多驱动模式的节能优势,制定了基于系统效率最优的驱动模式控制策略。根据该双电机耦合驱动系统的结构特点,定义了电机4种驱动模式并分别建立其动力学驱动模型和系统效率模型。在满足动力性要求的前提下,分析并划分了各驱动模式的工作范围,以系统效率为优化目标,采用粒子群优化算法进行优化,获得最佳的驱动模式切换控制和转矩分配策略。开展了Matlab/Simulink仿真和硬件在环试验验证。结果表明,经系统效率优化的驱动模式在满足动力性要求的前提下,有效提高了双电机耦合驱动系统的经济性,能耗降低11%。  相似文献   
3.
为了提高插电式混合动力汽车(PHEV)在电量保持下的燃油经济性,并解决插电式混合动力汽车在运行过程中动力元件效率对系统能量利用率影响的问题,制定了系统效率最优的控制策略。以PHEV关键动力部件的测试数据为基础,建立发动机、驱动电机、无级变速器(CVT)以及动力电池等关键部件的效率数值模型,并考虑了温度及荷电状态(SOC)对动力电池充放电功率的影响。设计以混合动力系统效率最优为适应度评价函数,将CVT速比、发动机转矩作为优化变量,以车速、加速度和SOC为状态变量,在动力性指标的约束下,运用遗传算法进行迭代寻优,PHEV的系统效率在第20代左右收敛于全局最优值。同时发动机转矩和CVT速比通过多代遗传进化,较快收敛于最佳值。将相关优化结果与车速、加速度拟合成相应的三维控制数表,综合数值建模和试验测试数据建模的方法,基于MATLAB/Simulink搭建插电式混合动力汽车整车控制策略仿真模型,采用新欧洲行驶循环工况进行仿真验证。结果表明:插电式混合动力汽车在电量保持模式下,利用遗传算法优化的系统效率最优控制策略相比优化前,动力电池SOC运行更为平稳,CVT效率有所提升,驱动电机及发动机转矩分配更为合理;百公里燃油消耗量从优化前的5.2 L降至4.5 L,燃油经济性提升了13.5%。  相似文献   
4.
为提高城市循环工况下客车的燃油经济性,开展了一种新型混联式混合动力客车匹配控制策略研究。根据该混联系统的结构特点,制定了串联与并联模式间的切换条件及控制规则,通过确定电池等效燃油模型,以各时刻下客车燃油消耗率最小为优化目标,对电池和发动机功率进行实时优化控制。研究结果表明:电池荷电状态在预定的区域内保持平衡,发动机运行工作点处于高效区域内,且整车燃油经济性相对原型客车提高了32.41%,与采用规则控制策略相比提高了13.2%。  相似文献   
5.
基于极小值原理的混联混合动力客车能量管理策略优化   总被引:1,自引:0,他引:1  
针对一款混联式混合动力客车特殊的结构特点对控制策略的要求,以电池功率为控制变量,以燃油消耗最小为目标,采用极小值原理,并基于所设计的求解流程和所建立的模型,对确定发动机和电池之间功率分配的能量控制策略进行优化仿真.结果表明,采用极小值原理对能量控制策略的优化效果显著,与规则控制策略相比,100km油耗降低了18.33%.  相似文献   
6.
针对实际行驶工况中不确定的行驶环境和不同的驾驶员风格等因素对新型混联式混合动力客车燃油经济性的影响,在统计若干城市循环工况数据的基础上建立驾驶员需求功率的马尔科夫模型,提出了一种基于随机动态规划算法的能量管理策略,获得了发动机和电池之间的功率分配控制规则.对新型混联式混合动力客车模型的仿真和硬件在环实验结果表明,所提出的策略能使电池荷电状态在预定的区域内保持平衡,使发动机运行工作点处于高效区域内,且整车100km油耗比原型客车和采用规则控制策略时分别降低了30.17%和11.29%.  相似文献   
7.
为了提高插电式燃料电池混合动力汽车的经济性和燃料电池耐久性,在构建燃料电池衰退模型的基础上,制定等效氢气消耗最小(ECMS)的反馈优化控制策略。ECMS反馈优化控制策略中目标价值函数的等效氢气消耗除包括燃料电池氢气消耗和动力电池等效氢气消耗外,还将燃料电池开路电压衰退转化成等效的氢气消耗加入到目标价值函数之中,以电机需求功率Pm、动力电池SOC值为状态变量,动力电池目标功率为控制变量,取使目标价值函数最小的动力电池目标功率作为参考动力电池目标功率输出,并根据反馈的燃料电池电压衰退速率对燃料电池系统输出功率限制变化值ΔPf进行动态调整,最终得到燃料电池目标功率。通过MATLAB/Simulink建立插电式燃料电池汽车前向仿真模型,采用城市道路循环(UDDS)工况进行验证。研究结果表明:相比基于规则的能量管理策略,电量保持(CS)阶段采用ECMS反馈优化控制策略,氢气消耗量降低2.6%,同时燃料电池的开路电压衰退降低4.1%,基于ECMS的反馈优化控制策略相比基于规则的能量管理策略在高效区间的工作点占比更高;与ΔPf分别为1,2,3 kW时相比,采用燃料电池系统电压衰退速率反馈调节ΔPf策略的氢气消耗量为0.105 3 kg,相比ΔPf为1,2 kW的氢气消耗量(0.121 3,0.110 2 kg)有明显优化,接近ΔPf为3 kW的氢气消耗量(0.102 9 kg),同时燃料电池电压衰退速率有明显的减小,整车经济性与燃料电池耐久性都得到了改善。  相似文献   
8.
本文中对一款装备新型双电机多模式驱动系统的电动汽车进行转矩分配优化。根据双电机多模式驱动系统的特点,建立整车模型,划分不同模式的工作范围,在满足动力性的前提下,面向系统效率,制定基于粒子群优化算法的转矩分配与模式切换策略,并采用离线与在线相结合的方法提高系统的实时响应速度。在Matlab/Simulink建立仿真模型进行仿真并开展硬件在环试验验证,结果表明:系统的平均效率比传统的模式切换策略高3%;能耗比基于遗传算法的转矩分配策略减少11.28%。  相似文献   
9.
为提高插电式燃料电池汽车的经济性,基于等效氢消耗最小策略,通过等效系数S与行驶里程的自适应规则调整目标价值函数,以控制动力电池电能消耗速率,同时引入参考SOC进一步修正等效系数S,使行驶过程中动力电池尽可能多地获取电网电能,同时避免动力电池过度放电,从而实现控制策略对行驶里程的自适应性。通过Matlab/Simulink建立插电式燃料电池汽车仿真模型,仿真结果表明,当行驶里程超过纯电动行驶里程后,该策略能控制动力电池SOC在行驶结束时到达目标值。硬件在环对比试验的结果表明,采用里程自适应的ECMS策略时,总里程为100,150和200 km的氢气消耗量分别比基于CD-CS的ECMS策略降低8.75%,14.21%和16.63%。  相似文献   
10.
为了进一步发挥混合动力汽车的节油性能,插电式混合动力汽车(Plug-in Hybrid Electric Vehicle,PHEV)在电量消耗(Charge-Depleting,CD)模式下,制订系统效率最优的能量管理策略来提高整车的电消耗行驶里程,进而实现提升整车燃油经济性的目的。分析了系统在电量消耗模式下相关典型工作模式,以车辆动力学方程为基础,推导出系统效率模型。以需求转矩、动力电池荷电状态、电机转速作为动力系统的输入,将系统效率最优作为系统的目标价值函数,在动力性指标的约束下,优化获得在电量消耗模式下的电机转矩和无级变速器速比的最佳控制规律,综合数值建模和试验数据建模方法,基于Matlab/Simulink软件平台构建插电式混合动力汽车的发动机、驱动电机、无级变速器(CVT)和动力电池等动力传动系统关键部件效率数值模型和整车动力学模型以及驾驶员模型,在新欧洲行驶循环(New European Driving Cycle,NEDC)工况下进行模型在环循环仿真验证分析。仿真结果表明,插电式混合动力汽车在电量消耗模式下,基于系统效率最优的能量管理策略能够使动力电池运行更加高效,转矩的分配更为合理,无级变速器获得较佳的控制规律。与直观式逻辑控制相比,纯电动续航里程提升了10.9 km,即经济性提高了15.3%,充分体现了所制订的控制策略的有效性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号