首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
公路运输   6篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
该文测定了配制的UHPC(超高性能混凝土)的基本材料参数,以建成的210 m跨径的普通钢筋混凝土箱形拱桥为例,通过原主拱圈箱形截面顶底板、腹板厚度的折减,对UHPC箱形截面进行了试设计,并开展有限元分析验证设计的合理性。结果表明:综合考虑截面应力储备、自振特性、刚度、稳定性的情况下,UHPC箱形拱桥设计时顶底板、腹板厚度可取同类型C55箱形拱桥的1/3。  相似文献   
2.
丁鹏  周建庭  杨俊  周璐  王宗山  朱超 《中外公路》2019,39(4):119-123
针对目前圬工肋拱桥的加固方法存在不少局限性的现状,该文提出采用力学性能优越的超高性能混凝土套箍加固主拱圈以提高拱桥承载力的思路,分别探讨了套箍加固圬工肋拱桥的内力和抗力计算原理,并将上述加固思路应用于重庆市开州区某大型圬工肋拱桥,结果显示:采用套箍加固法处治后的拱桥承载力得到明显提升,而且采用超高性能混凝土新型材料使加固效果更加明显,桥梁安全储备更充足。  相似文献   
3.
为研究低配筋UHPC中空短柱在轴心受压下的极限承载能力及其影响因素,以UHPC材料特性研究为基础,设计并制作18根不同壁厚、不同箍筋间距的低配筋UHPC中空短柱,开展轴心受压破坏试验研究及理论研究。采用控制变量法对比分析宽厚比、箍筋间距对低配筋UHPC中空短柱的极限荷载、破坏形态、轴向和横向变形的影响。研究结果表明:所有UHPC中空短柱在达到极限承载能力的70%之前,力学性能接近线弹性变化,侧向变形较小,在0.5 mm之内;随着变形的增大,试件出现微小裂缝并伴有钢纤维拔出声,细而密的裂缝显著增多,达到极限荷载时,试件均发出爆裂声;当设计宽厚比分别为5.67和3时,无箍筋UHPC空心短柱的极限承载力为理论计算值的70.88%和87.65%;随着箍筋间距加密,极限承载力有所提高,但加密至一定程度后,承载力不再增长,接近材料强度极限值;采用UHPC塑性损伤本构模型对构件进行数值模拟,分析结果与理论计算和试验结果符合较好,按照直接强度计算法得到的中空短柱极限荷载接近试验值,可供UHPC柱设计提供参考。  相似文献   
4.
为研究超高性能混凝土(U H PC)在圬工拱桥加固中的适用性,针对贵州省2座在役实腹式圬工拱桥的拱圈病害,提出采用U H PC加固,并开展加固设计、施工和荷载试验研究.参考钢筋混凝土增大截面法,在红岩桥(三跨14.14 m实腹式石拱桥)上开展试应用,拱腹增设15 cm厚U H PC加固层,加固层同原结构采用植筋方式粘结...  相似文献   
5.
为明晰超高性能混凝土(UHPC)加固RC结构的界面剪切力学行为,批量开展键槽定量化处理UHPC-NC界面抗剪承载性能试验研究。设计制作8组包含不同深度(t)、宽度(w)和间距(d)的UHPC-NC组合构件,分析了界面剪切荷载-滑移曲线特征,剪切应变分布规律、破坏形态以及极限抗剪承载力。试验结果表明,键槽处理方式能显著增强UHPC-NC界面初始剪切刚度(刚度值高于250 kN·mm-1)并有效提高界面极限抗剪强度(1.46~3.98 MPa,其中大于3 MPa的试件占总数的57.1%)。不同键槽参数t,dw对UHPC-NC界面抗剪强度的影响权值逐渐递减,且正角度开槽对界面抗剪强度的提升幅度为13%~32%,普遍优于负角度组;当深度t较小且w/t≤2时,后浇UHPC键槽部分承受较大剪切荷载,此时UHPC-NC界面出现“混合剪”破坏模式,能够有效发挥UHPC的抗弯拉性能;相同条件下,当w/t≥4时,后浇UHPC键槽面积在界面处占比增大,致使裂缝移至NC侧发展,即由NC主要承担界面剪力。此外,增大键槽间距d可改善界面域的剪力分配,“密集开槽”方式虽能有效提高界面抗剪能力,但考虑到此方式对原结构的损伤较大且施工成本较高,应对开槽深度和间距进行合理优化。提出基于断裂面法的UHPC-NC界面抗剪承载力计算公式,计算误差均在17%以内,计算结果表明,提出的公式可较好地评价定量化键槽处理的UHPC-NC界面抗剪性能。  相似文献   
6.
为研究不同壁厚的中空超高性能混凝土(UHPC)短柱在轴向压力下的变形和承载能力,制作4组不同壁厚的中空UHPC短柱试件,进行轴心受压试验,研究壁厚对试件裂缝发展、竖向变形、横向变形及承载力的影响。结果表明:初始裂缝均出现在荷载达到极限承载力的70%后,裂缝随荷载的增加发展不明显,破坏瞬间迅速开展;试件破坏前基本处于弹性阶段,纵向应变随荷载增加线性增大;壁厚较小时,试件存在端部破坏和板壁屈曲的现象;随着壁厚增大,试件的端部破坏和板壁屈曲情况得到改善;试件的宽厚比5时,承载力试验值和计算值吻合较好,宽厚比≥5时,计算承载力时应考虑0.8的修正系数。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号