首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
公路运输   4篇
  2001年   1篇
  1999年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有4条查询结果,搜索用时 9 毫秒
1
1.
Recent experiences have shown that even small-medium size passenger cars face an accident which has been connected with commercial vehicles so far: the roll-over. The roll-over is the most horrible accident type for truck drivers, since he/she does not have any indication before it happens, and consequently does not react properly. This article discusses some of the problems of the commercial vehicle stability in general, and offers a solution for detecting and avoiding roll-over by using the existing sensors and actuators of electronic brake system (EBS).  相似文献   
2.
Looking at the future trends of the road traffic, one will recognize that the commercial vehicle participation will not decrease, although it is required from the environmental and social viewpoints. The reason is that the other means of freight transport (water, railway, air) do not provide the same flexibility as the road transport, and direct business interest of those companies, who are using this transport form is larger than the eventual loss caused by the penalties to be paid (taxes, compensation of higher axle load). This conflict is hard to solve, but the effect can be minimized. The commercial vehicle industry attempts to introduce systems to the vehicles, which are targeting on reduction of the environmental impacts caused by heavy vehicles. These systems, which are named generally as “intelligent chassis systems”, electronically control the operation of the chassis subsystems (engine, transmission, brake, suspension) and co-ordinate their operation on a higher level (vehicle controller, intelligent control systems, such as adaptive cruise control, video camera based lane change recognition system, etc.). This paper reviews the state-of-the-art of the commercial vehicle chassis systems, and tries to project their future development.  相似文献   
3.
This paper presents the results of a parametric sensitivity analysis of a five-axle tractor-semitrailer vehicle combination using 3-DOF linear yaw/plane model. The first order logarithmic sensitivity functions are derived with respect to several vehicle design parameters. For stabilization of the vehicle's directional behaviour a fairly new control concept called “Active Unilateral Braking Control (AUBC)” acting on the tractor rear wheel's in order to produce a stabilizing yaw torque is investigated. The AUBC system improves not only the directional stability, but also affects the roll dynamics of the vehicle. The sensitivity of the controlled vehicle system with linear quadratic controller (LQR) is also examined, a robust controller design procedure is proposed as a result of the sensitivity analysis. The robustness of this controller in the presence of both internal (including parametric uncertainties, non-linear dynamics) and external disturbances (such as road irregularities and side wind) allows its implementation with confidence with a non-linear vehicle model. The applicability of this control system to a non-linear vehicle model is tested using a 34 DOF, non-linear vehicle model of the tractor-semitrailer combination.  相似文献   
4.
The suspension system has to fulfil a large number of partly contradictory requirements which can be improved by the application of controllable elements in the wheel suspension system. A number of studies dealing with the improvement of suspension characteristics have been published. In the present paper the stability of the controlled suspension systems will be examined. In the paper the stability problems of the active suspension system is analysed and the stable parameter regions are determined.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号