首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
综合类   1篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
开展了EA4T合金钢材料的低周疲劳试验、旋转弯曲高周疲劳试验与裂纹扩展速率试验, 考虑载荷类型、表面质量与尺寸系数等因素, 修正了标准小试样疲劳极限以预测全尺寸车轴的疲劳性能; 建立了轴箱内置铁路车轴(内箱车轴) 的有限元模型, 分析了内箱车轴与传统轴箱外置铁路车轴(外箱车轴) 临界安全部位的差异; 基于安全寿命设计理论, 结合修正的线性Miner疲劳累积损伤准则和载荷谱, 研究了内箱车轴的疲劳强度与服役性能; 分别采用Paris公式、NASGRO方程和LAPS模型拟合了裂纹扩展速率曲线, 基于损伤容限设计方法估算了内箱车轴和外箱车轴的裂纹扩展寿命。研究结果表明: 标准小试样的疲劳极限明显高于全尺寸车轴, 其疲劳极限均值分别为369、286 MPa; 与传统外箱车轴相比, 由于加载位置的改变, 内箱车轴的临界安全部位从卸荷槽处转移至轴身中部; 内箱车轴疲劳总寿命为2.5×1012 km, 满足30年服役寿命的设计要求; 但是在运输或服役过程中车轴表面不可避免会存在缺陷, 缺陷处存在严重的应力集中, 为裂纹的萌生和扩展提供了便利条件, 使车轴疲劳寿命大幅降低; 当车轴临界安全部位的裂纹深度扩展到5 mm时, 内箱车轴和外箱车轴的剩余寿命分别仅为3.2×105、2.0×105 km, 应根据无损探伤精度合理制定无损检测周期, 确保车轴安全服役。   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号