首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
公路运输   1篇
水路运输   8篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2008年   3篇
  2007年   2篇
排序方式: 共有9条查询结果,搜索用时 640 毫秒
1
1.
自流冷却系统引水装置水力性能研究   总被引:1,自引:1,他引:0  
为提出先进船舶自流冷却系统引水装置的定量设计原则,参照水泵性能描述方法,提出自流扬程的概念,用自流扬程和附加阻力描述引水装置水力性能。基于伯努利方程和边界层方程的计算分析表明,为提高自流扬程,引水装置吸入口应垂直于来流且高于边界层厚度。基于冲量定理进行计算分析并结合三维仿真计算结果表明,为平衡自流能力和附加阻力,引水装置的入口流速与航速之比宜设计在一定区间内。实船计算结果验证了本文设计方法的正确性。  相似文献   
2.
基于吸附过程原理建立了燃料电池系统焓轮增湿器传质模型,模拟研究了空气温度、流量和转轮转速等操作参数对焓轮增湿器性能的影响,模拟结果与实验数据吻合良好.操作参数对增湿器传质过程的影响机制分析表明,提高转轮转速、降低干空气流量和温度有利于提高转轮表面有效传质系数和增湿器传质性能.  相似文献   
3.
为揭示低压吹除过程中潜艇及舱内压载水的运动规律、提供潜艇操纵控制依据,建立单壳体潜艇螺杆压气机低压吹除系统动态过程模型,根据实艇情况验证了模型计算得到的吹除时间.分析了压载水舱形状结构参数和潜艇总体及系统设计参数对低压吹除过程的影响.研究结果表明,压载水舱截面形状对潜艇低压吹除过程有一定影响,随压气机流量增大,吹除时间缩短速率减小,随潜艇外形尺寸增大,吹除时间增加的速率增大.  相似文献   
4.
新型燃料电池发动机空气增湿系统性能研究   总被引:2,自引:0,他引:2  
对鼓风机、散热器和膜增湿器的工作特性进行了研究,基于系统整体性能优化进行了燃料电池发动机空气增湿系统集成设计。空气增湿系统和冷却系统得到有效耦合,对新型空气增湿系统性能研究表明:该系统效率更高,鲁棒性更强。  相似文献   
5.
燃料电池系统膜增湿器传热传质性能研究   总被引:2,自引:1,他引:1  
对大功率常压燃料电池系统膜增湿器的传热传质性能进行实验研究,确定了影响膜增湿器性能的主要因素,建立膜增湿器传热传质数学模型,仿真研究了这些因素对膜增湿器性能的影响机制.研究表明,降低增湿器操作压力,增大空气流量,提高进气温度有利于提高扩散系数;减小空气流量和降低干空气进口温度有利于降低膜内水含量梯度.  相似文献   
6.
大功率燃料电池堆氢气膜增湿系统实验研究   总被引:1,自引:0,他引:1  
对70 kW常压质子交换膜燃料电池堆氢气膜增湿系统的传热传质特性进行了实验研究.管壳式膜增湿器应用于大功率燃料电池堆氢气增湿系统具有增湿速率快、被增湿氢气润湿程度好的优点.利用液态水对氢气进气进行增湿,实验中被增湿后氢气总能够达到过饱和状态,氢气流量一定时,膜增湿器增湿水进出口温差随水流量增大而降低,氢气出口温度随着液态水流量升高而接近增湿水进口温度;增大增湿水流量能够降低增湿水通过膜增湿器前后温差.增湿水温度和流量一定时,燃料电池堆负荷增大,被增湿氢气出口相对湿度变化不明显.  相似文献   
7.
为揭示柴油机废气低压吹除过程中潜艇及舱内压载水的运动规律,提供潜艇操纵控制依据,通过耦合柴油机工作过程方程与压载水吹除过程方程,建立了考虑压载水舱内排气背压与柴油机废气流量间相互影响的吹除过程动态模型,根据实艇数据验证了模型。应用模型计算分析了压载水舱形状结构参数和潜艇总体及系统设计参数对低压吹除过程的影响。研究结果表明,压载水舱截面为抛物线形比圆形和梯形时更有利于柴油机工作,吹除速度也更快;随潜艇外形尺寸增大,吹除时间增加的速率减小。  相似文献   
8.
准确计算管网摩阻系数,对具有复杂流态船舶流体管网的优化设计、运行、管理及工作特性实时调节和准确计算都有重要意义。本文提出采用“变流阻系数”方法,在计算中实时更新任意迭代时步的各管网分支流阻系数,基于图论理论,在MATLAB软件中编程实现。理论计算与实验结果进行了对比,两者具有较好的一致性。研究发现,相比定流阻系数方法,利用变流阻系数网络解算算法对船舶海水冷却管网进行水力分析,可以大大减小解算误差,提高解算精度。  相似文献   
9.
舰船燃料电池动力系统研究现状   总被引:2,自引:1,他引:1  
燃料电池系统具有高效率、低噪声、低电磁信号等显著优点,是未来舰船动力源的最有力竞争者之一。阴极进排气系统、阳极进排气系统、燃料电池堆、水热管理系统以及系统总体优化技术都有尚待解决的难点;贮氢固体的低温释氢技术、重整制氢过程中的高效除硫技术、高温质子交换膜的制取将是实现燃料电池系统广泛应用的关键。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号