首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
水路运输   6篇
综合运输   2篇
  2018年   4篇
  2017年   1篇
  2012年   1篇
  2008年   1篇
  1983年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
2.
3.
In this paper, we report our study on a numerical fluid-structure interaction problem originally presented by Mok et al.(2001) in two dimensions and later studied in three dimensions by Valdés Vazquez(2007), Lombardi(2012), and Trimarchi(2012). We focus on a 3D test case in which we evaluated the sensitivity of several input parameters on the fluid and structural results. In particular, this analysis provides a starting point from which we can look deeper into specific aspects of these simulations and analyze more realistic cases, e.g., in sails design. In this study, using the commercial software ADINATM, we addressed a well-known unsteadiness problem comprising a square box representing the fluid domain with a flexible bottom modeled with structural shell elements. We compared data from previously published work whose authors used the same numerical approach, i.e., a partitioned approach coupling a finite volume solver(for the fluid domain) and a finite element solver(for the solid domain). Specifically, we established several benchmarks and made comparisons with respect to fluid and solid meshes, structural element types, and structural damping, as well as solution algorithms. Moreover, we compared our method with a monolithic finite element solution method. Our comparisons of new and old results provide an outline of best practices for such simulations.  相似文献   
4.
The problem of the optimal control of an oversaturated intersection, originally proposed by Gazis and Potts (1965), is reviewed and a feedback solution is obtained for a multi-stream pattern under general assumptions on the variability of input flows and control constraints. The dissaturation control problem is solved in two steps: first, the least dissaturation time is evaluated by taking into account the green split constraints; then a minimum waiting time problem over the least dissaturation horizon is solved to select the optimal output rate pattern.  相似文献   
5.
Deep water samples (in contact with the sediment) were collected at eight different points of the estuary of the Nerbioi-Ibaizabal River (Bay of Biscay, Basque Country), both at low and high tides, during four sampling campaigns (May, September and December 2005 and March 2006). Superficial water was also sampled in March 2006. Temperature, pH, redox potential, dissolved oxygen and electrical conductivity corresponding to each sample were measured in situ at each sampling point using a multiparametric probe. The physico-chemical parameters found are typical of highly stratified estuaries, with an acceptable oxygenation level. After filtering and acidifying the samples, they were analysed by inductively coupled plasma/mass spectrometry (ICP/MS) to simultaneously determine the total concentration of Al, As, Cr, Cu, Fe, Mn, Ni and Zn. Concentrations in the μg kg− 1 level were found in all cases (cCr and cNi, 1–10; cAl, cAs and cZn, 10–50; cCu and cMn, 10–100 and cFe, 100–400 μg kg− 1). A probable net input of Al, Cr, Mn and Zn via the main (Nerbioi-Ibaizabal) and some of the tributary rivers (Galindo, Asua and Gobela) was identified. Evidence of a common source of Al and Zn to the estuary was found. Correlation analysis of data revealed connections between variables (concentration of Cu, Fe and As with salinity, as well as cAl with cZn, cCu with cFe, cAs with cFe, and cAs with cCu). Principal Component Analysis (PCA) of data allowed the samples to be grouped according to sampling campaign, with two principal components accounting for 62% of the total variance. In addition, plots of element concentration against salinity suggested a conservative behaviour for As, Cu and Fe and a non-conservative one for Cr. Not clear mixing behaviour was observed for the rest of elements.  相似文献   
6.
In this paper, we present our analysis of the non-cavitating and cavitating unsteady performances of the Potsdam Propeller Test Case (PPTC) in oblique flow. For our calculations, we used the Reynolds-averaged Navier-Stokes equation (RANSE) solver from the open-source OpenFOAM libraries. We selected the homogeneous mixture approach to solve for multiphase flow with phase change, using the volume of fluid (VoF) approach to solve the multiphase flow and modeling the mass transfer between vapor and water with the Schnerr-Sauer model. Comparing the model results with the experimental measurements collected during the Second Workshop on Cavitation and Propeller Performance – SMP’15 enabled our assessment of the reliability of the open-source calculations. Comparisons with the numerical data collected during the workshop enabled further analysis of the reliability of different flow solvers from which we produced an overview of recommended guidelines (mesh arrangements and solver setups) for accurate numerical prediction even in off-design conditions. Lastly, we propose a number of calculations using the boundary element method developed at the University of Genoa for assessing the reliability of this dated but still widely adopted approach for design and optimization in the preliminary stages of very demanding test cases.  相似文献   
7.
The installation of stationary ultracapacitor storage devices, as widely recognized, allows the recovery of the braking energy for increasing the energy efficiency as well as a better pantograph voltage profile. In the paper a new methodological mean is proposed for determining the fundamental characteristics of this kind of storage device, characterized by high power density, interfaced with the railroad by a bidirectional dc-dc converter. More specifically, the parameters of the storage system can be determined by employing an optimization technique which in a quite general way is able to take contemporaneously into account several aspects in an integrated manner. Some considerations are performed for properly taking into account the stochastic aspects of the design procedure. Numerical simulations with respect to a case study are presented, pointing out the potentiality of the tailored technique. Experimental results are also reported, with reference to an electromechanical simulator, in order to put in evidence the effectiveness and the actual implementation of the proposed optimization technique.  相似文献   
8.
In this paper, we present our analysis of the non-cavitating and cavitating unsteady performances of the Potsdam Propeller Test Case(PPTC) in oblique flow. For our calculations, we used the Reynolds-averaged Navier-Stokes equation(RANSE) solver from the open-source Open FOAM libraries. We selected the homogeneous mixture approach to solve for multiphase flow with phase change, using the volume of fluid(Vo F) approach to solve the multiphase flow and modeling the mass transfer between vapor and water with the Schnerr-Sauer model. Comparing the model results with the experimental measurements collected during the Second Workshop on Cavitation and Propeller Performance – SMP'15 enabled our assessment of the reliability of the open-source calculations. Comparisons with the numerical data collected during the workshop enabled further analysis of the reliability of different flow solvers from which we produced an overview of recommended guidelines(mesh arrangements and solver setups) for accurate numerical prediction even in off-design conditions. Lastly, we propose a number of calculations using the boundary element method developed at the University of Genoa for assessing the reliability of this dated but still widely adopted approach for design and optimization in the preliminary stages of very demanding test cases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号