首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
公路运输   22篇
水路运输   11篇
综合运输   1篇
  2020年   1篇
  2018年   5篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   5篇
  2009年   6篇
  2008年   5篇
  2001年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
This paper presents vibration control of a tracked vehicle installed with electro-rheological suspension units (ERSU). As a first step, an in-arm type ERSU is designed, and its spring and damping characteristics are evaluated with respect to the intensity of electric fields. Subsequently, a 16 degree-of-freedom model for a tracked vehicle equipped with the proposed ERSU is established followed by the formulation of a neuro-fuzzy controller. This controller takes account for both ride quality and steering stability by adopting a weighting parameter between two performance requirements. The parameter is appropriately determined by employing a fuzzy algorithm associated with two fuzzy variables: the vertical speed of the body and the rotational angular speed of the wheel. Control performances to isolate unwanted vibration from bump and random road excitations are evaluated through computer simulations. In addition, maximum speed of the vehicle with 6 Watt power absorption is investigated with respect to the road roughness.  相似文献   
2.
A hybrid electric vehicle (HEV) is a vehicle that combines a conventional propulsion system with an on-board rechargeable energy storage system to achieve better fuel economy than a conventional vehicle HEVs do not have limited ranges like battery electric vehicles, which use batteries charged by an external source. The different propulsion power systems may have common subsystems or components. The objective of this study is to compare the fuel economies of a conventional step van, a series hybrid electric step van (HESV), and a parallel HESV by calculating the fuel consumption using the ADVISOR software by NREL. We also showed the results of the vehicles in different driving cycles including the Central Business District bus cycles, the New York City Cycle, and the US EPA City and Highway cycles.  相似文献   
3.
Ever since vehicle noise, vibration, and harshness (NVH) reduction technology made dramatic improvements, vehicle interior noises represented by Squeak and Rattle (S/R) becomes an ever more important factor to improve the emotional quality of vehicles. Generally, people detect S/R noises on automotive interior parts, brake system, suspension, Body in White (BIW), etc. Among them, the rear-glass joint is a major source for vehicle interior noise, and can cause S/R noises under a variety of environmental and driving conditions. This study uses, two approaches, experimental and numerical approaches, to define the cause of S/R noise at the rear-glass section. Based on these two approaches, this study confirms that S/R noises generate through the contact between bottom side of molding and BIW. The sealant penetration length, panelmolding distance, and sealant width are the parameters affecting noise generation. In addition, this study created an optimal design with Design of Experiments (DOE) of the rear-glass joint. The design maximized the sealant penetration length, which is a parameter that majorly affects noise. The optimal design comprises of two steps: sealant injections shape optimization and rear-glass joint parameter optimization. Each step is carried out with FEA and validated by sealant penetration experiments. Through these optimizations, this study obtained an optimum combination of design parameters and fignificantly reduced the noise generated by rear-glass section.  相似文献   
4.
A large-sized tactical wrecker is a special-purpose vehicle that lifts and tows tactical vehicles and heavy loads. It consists of a crane, a post structure, outriggers and a suitable chassis truck, and during its initial design, the structural safety and tipping stability should be preemptively examined in terms of the layout of these components. This paper proposes computer-aided engineering (CAE) methods to evaluate the maximum lifting capacity of the wrecker and the structural safety of its crane during the initial design. The analytical model for the large-sized wrecker is constructed with 236 degrees of freedom by combining the crane system developed using the ADAMS macros with the dynamic model of large chassis truck with an axle suspension. The design parameters for the wrecker model that influence the tipping stability are selected, and then the maximum lifting loads with the corresponding changes are calculated. This parametric study shows that the characteristics of the boom and the layout of the outriggers greatly affect the maximum lifting capacity. Finite element (FE) analyses of the 1st stage boom and the 3rd stage boom show the stresses under the maximum overturning moment condition are within the allowable strength.  相似文献   
5.
In 1994, Townend proposed a method to calculate the relative changes in various wave characteristics and structure-related parameters due to sea level rise for regular waves. The method was extended to irregular waves by Cheon and Suh in 2016. In this study, this method is further extended to include the effect of future change in offshore wave height and the sea level rise. The relative changes in wavelength, refraction coefficient, shoaling coefficient, and wave height in nearshore area are presented as functions of the relative changes in water depth and offshore wave height. The calculated relative changes in wave characteristics are then used to estimate the effect of sea level rise and offshore wave height change on coastal structures by calculating the relative changes in wave run-up height, overtopping discharge, crest freeboard, and armor weight of the structures. The relative changes in wave characteristics and structure-related parameters are all expressed as a function of the relative water depth for various combinations of the relative changes in water depth and offshore wave height.  相似文献   
6.
Hybrids combine a combustion engine with an electric motor and battery. The two technologies can be combined to reduce fuel consumption and exhaust emissions. This paper presents the concept of hybrid electric vehicles (HEVs) applied to truck or van vehicles with diesel engines. The simulation results from the advanced vehicle simulator (ADVISOR) demonstrate that the required power may be properly shared between the internal combustion engine and electric motor. The simulation can also be used to prove that the technique is useful for improvements in driving performance; additionally, the technique is suitable for hybrid electric vehicles, allowing for good fuel economy and low emissions performance.  相似文献   
7.
Driving simulators are useful tools that can be used not only to test the components of future cars, but also to evaluate the telematics service and HMI (Human-Machine Interface). However, driving simulators that are currently available cannot be implemented to test and evaluate a real commercial telematics service system because the GPS (Global Positioning System), which contains basic functional support for the telematics module, does not work in the VR (virtual reality) environment. A driving simulator, together with the GPS simulator, can be used to study the HMI to evaluate commercial CNS (Car Navigation Systems). In this paper, Sungkyunkwan University Driving Simulator (SKUD) is developed with a GPS simulator that is able to emulate GPS satellite signals and includes the NMEA-0183 protocol and RS232C communication standards. Furthermore, using the SKUD, the HMI of the real commercial CNS could be investigated with driver workload assessment methods.  相似文献   
8.
To guarantee the efficiency of maintenance strategies for a complex structure, safety and cost limitations must be considered. This research introduces RCM-based (Reliability Centered Maintenance) life cycle optimization for reasonable maintenance. The design variable is the reliability of each part, which consists of a complex structure, while the objective is to minimize the total cost function in order to maintain the system within the desired system reliability. This research constructs the cost function that can reflect the current operating condition and maintenance characteristics of individual parts by generating essential cost factors. To identify the optimal reliability of each component in a system, this paper uses a Neuro-Evolutionary technique. Additionally, this research analyzes the reliability growth of a system by using the AMSAA (Army Material Systems Analysis Activity) model to estimate the failure rate of each part. The MTBF (Mean Time Between Failure) and the failure rate of the whole system, which is responding to the individual parts, are estimated based on the history data by using neural networks. Finally, this paper presents the optimal life cycle of a complex structure by applying the optimal reliability and the estimated MTBF to the RAMS (Reliability, Availability, Maintainability, and Safety) algorithm.  相似文献   
9.
As the concept of concurrent engineering has emerged along with support for optimization techniques, lots of endeavors have been made to apply optimization techniques to real design problems for holistic decision-making. Even if the range of design problems to which optimization is applicable has been extended, most ship designs use an iterative and manual approach due to the difficulties of seamless integration of all related design activities. This paper proposes a process-centric management framework for the preliminary ship design process depending on these approaches. Requirements for the framework are generated based on the features of the ship design process first. The proposed framework consists of both process scheduling and process management parts. Each of these modules is divided into submodules, and the modules and their interactions are elaborated to reflect actual design practice. The designed framework is embodied within a workflow system and its usefulness examined through a pilot project.  相似文献   
10.
In 1994, Townend proposed a method to calculate the relative changes in various wave characteristics and structure-related parameters due to sea level rise for regular waves. The method was extended to irregular waves by Cheon and Suh in 2016. In this study, this method is further extended to include the effect of future change in offshore wave height and the sea level rise. The relative changes in wavelength, refraction coefficient, shoaling coefficient, and wave height in nearshore area are presented as functions of the relative changes in water depth and offshore wave height. The calculated relative changes in wave characteristics are then used to estimate the effect of sea level rise and offshore wave height change on coastal structures by calculating the relative changes in wave run-up height, overtopping discharge, crest freeboard, and armor weight of the structures. The relative changes in wave characteristics and structure-related parameters are all expressed as a function of the relative water depth for various combinations of the relative changes in water depth and offshore wave height.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号