首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
公路运输   4篇
水路运输   5篇
综合运输   2篇
  2018年   1篇
  2016年   1篇
  2013年   2篇
  2004年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1977年   1篇
排序方式: 共有11条查询结果,搜索用时 46 毫秒
1.
A systematic method for assessing intact ship stability with a free-running model in a seakeeping and maneuvering basin is proposed in this paper. Model experiments were carried out in extremely steep regular waves for a model drifting, running in head seas, and quartering seas. This method was applied to two purse seiners, and efficiently identified thresholds in metacentric heights for capsizing of these ships. These capsizing thresholds are compared with requirements of the IMO Code on Intact Stability. This series of model experiments also confirms that capsizing at the threshold occurs only in quartering seas, and shows that capsizing is caused by broaching, loss of stability on a wave crest, or bow diving. Received for publication on Jan. 20, 1999; accepted on July 6, 1999  相似文献   
2.
For the theoretical consideration of a system for reducing skin friction, a mathematical model was derived to represent, in a two-phase field, the effect on skin friction of the injection of micro air bubbles into the turbulent boundary layer of a liquid stream. Based on the Lagrangian method, the equation of motion governing a single bubble was derived. The random motion of bubbles in a field initially devoid of bubbles was then traced in three dimensions to estimate void fraction distributions across sections of the flow channel, and to determine local bubble behavior. The liquid phase was modeled on the principle of mixing length. Assuming that the force exerted on the liquid phase was equal to the fluid drag generated by bubble slip, an equation was derived to express the reduction in turbulent shear stress. Corroborating experimental data were obtained from tests using a cavitation tunnel equipped with a slit in the ceiling from which bubbly water was injected. The measurement data provided qualitative substantiation of the trend shown by the calculated results with regard to the skin friction ratio between cases with and without bubble injection as function of the distance downstream from the point of bubble injection.List of symbols B law of wall constant - C f local coefficient of skin friction - C f0 local coefficient of skin friction in the absence of bubbles - d b bubble diameter [m] - g acceleration of gravity [m/s2] - k 1 k4 proportional coefficient - k L turbulent energy of the liquid phase [m2/s2] - L representative length [m] - l b mean free path of a bubble [m] - m A added mass of a single bubble [kg] - m b mass of a single bubble [kg] - N x ,N y ,N z force perpendicular to the wall or ceiling exerted on a bubble adhering to that wall or ceiling [N] - P absolute pressure [Pa] - Q G rate of air supply [/min] - q L (i) turbulent velocity at the ith time increment [m/s] - R> ex Reynolds number defined by Eq. 32 - T *L integral time scale of the liquid phase [s] - U velocity of the main stream [m/s] - ,¯v,¯w time-averaged velocity components [m/s] - u,v,w turbulent velocity components [m/s] - û L ,vL root mean square values of liquid phase turbulence components in thex- and y-directions [m/s] - V volume of a single bubble [m3] - X,Y,Z components of bubble displacement [m] - x s ,y s ,z s coordinate of a random point on a sphere of unit diameter centered at the coordinate origin - root mean square of bubble displacement in they-direction in reference to the turbulent liquid phase velocity [m] - local void fraction - m mean void fraction in a turbulent region - regular random number - R v increment of the horizontal component of the force acting on a single bubble, defined by Eq. 22 [N] - t time increment [s] - 1 reduction of turbulent stress [N/m2] - L rate of liquid energy dissipation [m2/s3] - m coefficient defined by Eq. 30 - law of wall constant in the turbulent region in absence of bubbles - 1 law of wall constant in the turbulent region in presence of bubbles  相似文献   
3.
4.
This study investigated whether the availability of transportation alternatives for older drivers is a determinant of the decision to cease driving. We recruited participants from a total of 7827 drivers aged 69 years or older living in Ibaraki Prefecture, Japan who were scheduled to renew their driving license between February and April 2011. In November 2010, we distributed questionnaires to collect data on predictors of driving cessation, and again in December 2012 to determine who had actually ceased driving. The relative impacts of factors related to driving cessation were then estimated. Of the 3089 respondents, 157 did not renew their license. The strongest determinants of this decision were having been advised to stop driving and if they had developed less confidence in their ability to drive safely. Even so, respondents were far more likely to have actually stopped driving if they were sure that someone else was available to provide a ride when they needed one. The final decision to stop driving is strongly influenced by personal convenience based on private transport, especially amongst drivers who have been advised to stop. The availability of public transport alternatives is not as important a factor in this decision.  相似文献   
5.
The control of a remotely-operated underwater vehicle to maintain a prescribed depth in shallow water under irregular surface waves is realized through the application of the Robust Adaptive Neuro Controller, a composite control system incorporating—together with the conventional control algorithm—a neural network controller. This network bestows a learning capability on the system, allowing it to deal with unanticipated disturbances that would otherwise cause erroneous behavior of the vehicle. The effectiveness of this application is verified through mathematical simulation of a model vehicle's behavior, through experiment in a model basin, and through simulation of the behavior of an actual remotely operated vehicle in shallow water under irregular surface waves. Graphic data representing the learning process undergone by the neural network distinctly indicate the rising output from the network with the progression of learning, and the vehicle's depth variation traced in terms of the mean square error vividly show the diminution of deviation from the prescribed depth obtained with application of the neural network. Thus controlled to maintain constant depth, under-water vehicles with power supplied externally through a tether for propulsion and for heavy-duty operations should consolidate their advantage for such activities as maintenance of submarine structures and surveys in deep or hazardous water.  相似文献   
6.
A newly developed tire model for the Overturning Moment (OTM) characteristics and the analysis of the influence of OTM on vehicle rollover behavior are presented. The new OTM model was developed based on the so-called Magic Formula tire model. The concept of the new model involves identifying the difference between the simple model and the measurements to the newly defined functions. It was seen that the new model agrees very well with the measured data over a wide range of tire vertical loads, slip angles and camber angles. The influence of tire OTM on the vehicle rollover behavior was also investigated by using a full vehicle simulation in which a rather large steering angle was input. The results obtained from the vehicle simulation with three different tire models (model without OTM, simple model and new model) were compared with the experimental results. It was found that the calculated result obtained with the new OTM model agreed best with the experiment.  相似文献   
7.
This paper describes the feasibility of improving the braking performance of a commercial vehicle by using an electronic braking system. An electronic braking system enables the braking force at each wheel to be independently controlled. Braking force distribution control makes the braking force at each wheel proportional to each wheel's load. Results of computer simulation and vehicle test showed that the proposed control laws can eliminate the effects of a laden condition on the braking distance and can increase the degree of deceleration at which wheel lock occurs, resulting in improved vehicle attitude stability during a critical maneuver.  相似文献   
8.
This paper describes the development of the braking assistance system based on a “G-Vectoring” concept. The present work focuses in particular on “Preview G-Vectoring Control” (PGVC), which is based on the “G-Vectoring Control” (GVC) scheme. In GVC, the longitudinal-acceleration control algorithm is based on the actual lateral jerk. PGVC decelerates a vehicle before it enters a curve, and is based on a new longitudinal-acceleration control algorithm which uses predicted and actual lateral jerk. Using the predicted lateral jerk makes it possible to decelerate the vehicle prior to curve entry. This deceleration can emulate a driver’s deceleration as the vehicle approaches a curve entry. PGVC is based on such deceleration algorithms and enables automatic deceleration similar to the action of a driver. It is thus possible to significantly improve the driver’s feeling when this system is activated. Driving tests with this new control system on snowy-winding course confirmed that the automatic brake control quality improved considerably compared to manual driver control considering both lap time and ride quality. These results indicate that PGVC can be a useful braking assistance system not only to improve the driver’s handling performance but also to reduce the brake-task during driving on winding roads.  相似文献   
9.
A method of enveloping the hull with a sheet of microbubbles is discussed. It forms part of a study on means of reducing the skin friction acting on a ship's hull. In this report, a bubble traveling through a horizontal channel is regarded as a diffusive particle. Based on this assumption, an equation based on flow flux balance is derived for determining the void fraction in approximation. The equation thus derived is used for calculation, and the calculation results are compared with reported experimental data. The equation is further manipulated to make it compatible with a mixing length model that takes into account the presence of bubbles in the liquid stream. Among the factors contained in the equation thus derived, those affected by the presence of bubbles are the change of mixing length and the difference in the ratio of skin friction between cases with and without bubbles. These factors can be calculated using the mean void fraction in the boundary layer determined by the rate of air supply into the flow field. It is suggested that the ratio between boundary layer thickness and bubble diameter could constitute a significant parameter to replace the scale effect in estimating values applicable to actual ships from corresponding data obtained in model experiments.List of symbols a 1 proportionality constant indicating directionality of turbulence - B law-of-the-wall constant - C f local skin-friction coefficient in the presence of bubbles - C f0 local skin-friction coefficient in the absence of bubbles - d b bubble diameter (m) - g acceleration of gravity (m/s2) - j g flow flux of gas phase accountable to buoyancy (m/s) - j t flow flux of gas phase accountable to turbulence (m/s) - k 4 constant relating reduction of liquid shear stress by bubble presence to decrease of force imparted to bubble by its displacement due to turbulence - l b mixing length of gas phase (m) - l m mixing length of liquid phase (m) - l mb diminution of liquid phase mixing length by bubble presence (m) - Q G rate of air supply to liquid stream (l/min) - q /g velocity of bubble rise (m/s) - 2R height of horizontal channel (m) - T * integral time scale (s) - U m mean stream velocity in channel (m/s) - U friction velocity in channel (m/s) - V volume of a bubble (m3) - u, ¯ v time-averaged stream velocities inx- andy-directions, respectively (m/s) - u, v turbulent velocity components inx- andy-directions, respectively (m/s) - v root mean square of turbulence component in they-direction (m/s) - root mean square of bubble displacement iny-direction with reference to turbulent liquid phase velocity (m) - y displacement from ceiling (m) - local void fraction - m mean void fraction in boundary layer - m constant relating local void fraction to law-of-the-wall constant - t reduction of turbulent stress (N/m2) - law-of-the-wall constant in turbulent liquid region in absence of bubbles - 1 law-of-the-wall constant in turbulent liquid region in presence of bubbles - 2 law-of-the-wall constant in gas phase - m constant indicating representative turbulence scale (m) - viscosity (Pa × s) - v kinematic viscosity (m2/s) - density (kg/m3) Suffixes G gas - L liquid - 0 absence of bubbles  相似文献   
10.
This paper examines choice behaviors pertaining to the time at which users of plug-in hybrid electric vehicle with 24 km electric range charge their vehicles after arriving at home under a dynamic electricity pricing scheme. The following mutually exclusive alternatives are presented: no charging, charging immediately after arriving at home, charging at the cheapest time, and charging at other times. Four versions of a mixed logit model with unobserved heterogeneity are applied to panel data on vehicle usage from 9 households with 2226 observations in Toyota City. Estimation results suggest that users’ willingness to charge become stronger with increasing driving distance when the driving distance is less than the electric range of 24 km, while tend not to charge when the driving distance is longer than the electric range. Users who return home at the cheapest time or during the day are willing to charge immediately after arriving at home. Electricity prices significantly affect choices to charge at the cheapest time for all users, and stay-at-home mother users and users returning home in the evening tend to charge at the cheapest time. Users returning home in the evening also tend to charge at other times, and being accustomed to charge at a certain time increases the probability of charging at other times. In addition, considerable variations are found across individuals with respect to their preferences for charge timing alternatives as well as for electricity prices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号